浏览全部资源
扫码关注微信
1. 信息工程大学信息技术研究所,河南 郑州 450002
2. 国家数字交换系统工程技术研究中心,河南 郑州 450002
[ "刘树新(1987- ),男,山东临朐人,博士,信息工程大学助理研究员,主要研究方向为链路预测、通信网络安全" ]
[ "李星(1987- ),男,河南新乡人,博士,信息工程大学助理研究员,主要研究方向为链路预测、社团挖掘" ]
[ "陈鸿昶(1964- ),男,河南郑州人,信息工程大学教授、博士生导师,主要研究方向为通信与信息系统、数据科学与人工智能" ]
[ "王凯(1980- ),男,河南许昌人,博士,信息工程大学副研究员,主要研究方向为链路预测、社会网络分析" ]
网络出版日期:2020-06,
纸质出版日期:2020-06-25
移动端阅览
刘树新, 李星, 陈鸿昶, 等. 基于资源传输匹配度的复杂网络链路预测方法[J]. 通信学报, 2020,41(6):70-79.
Shuxin LIU, Xing LI, Hongchang CHEN, et al. Link prediction method based on matching degree of resource transmission for complex network[J]. Journal on communications, 2020, 41(6): 70-79.
刘树新, 李星, 陈鸿昶, 等. 基于资源传输匹配度的复杂网络链路预测方法[J]. 通信学报, 2020,41(6):70-79. DOI: 10.11959/j.issn.1000-436x.2020124.
Shuxin LIU, Xing LI, Hongchang CHEN, et al. Link prediction method based on matching degree of resource transmission for complex network[J]. Journal on communications, 2020, 41(6): 70-79. DOI: 10.11959/j.issn.1000-436x.2020124.
为了解决基于资源传输的链路预测方法忽略节点间匹配度对资源传输过程影响的问题,提出了一种基于资源传输匹配度的复杂网络链路预测方法。首先,对资源传输路径上的2个端点进行详细分析,提出任意节点间匹配度的量化方法;然后,为了刻画匹配度对于节点间资源传输过程的影响程度,定义了资源传输匹配度;最后,基于资源传输匹配度,考虑节点间双向传输的资源量,提出资源传输匹配度指标。在9个实际网络数据集上的实验测试表明,相比其他基于相似性指标,所提方法在AUC和Precision衡量标准下能够取得更好的效果。
In order to solve the problem that many existing resource-transmission-based methods ignore the important influence of the matching degree of two endpoints on resource transmission
a link prediction method was proposed based on matching degree of resource transmission for complex networks.Firstly
by analyzing the two endpoints on the resource transmission path in detail
the method of quantifying the matching degree between two nodes was proposed.Then
in order to describe the influence of matching degree on resource transmission process between nodes
the matching degree of resource transmission was defined.Finally
based on the matching degree of resource transmission
a resource transmission matching index was proposed considering the resource amount of bidirectional transmission between nodes.The experimental results of nine datasets show that compared with other similarity indices
the proposed index can achieve higher prediction accuracy under the AUC and Precision metrics.
CUI Y , CAI M , DAI Y , et al . A hybrid network-based method for the detection of disease-related genes [J ] . Physica A:Statistical Mechanics and its Applications , 2018 , 492 : 389 - 394 .
SHANMUKHAPPA T , IVAN W H , CHI K T . Spatial analysis of bus transport networks using network theory [J ] . Physica A:Statistical Mechanics and Its Applications , 2018 , 502 : 295 - 314 .
CHENG Y , TAO F , XU L , et al . Advanced manufacturing systems:supply–demand matching of manufacturing resource based on complex networks and Internet of Things [J ] . Enterprise Information Systems , 2018 , 12 ( 7 ): 780 - 797 .
KIM J , HASTAK M . Social network analysis [J ] . International Journal of Information Management:The Journal for Information Professionals , 2018 , 38 ( 1 ): 86 - 96 .
刘树新 , 季新生 , 刘彩霞 , 等 . 一种信息传播促进网络增长的网络演化模型 [J ] . 物理学报 , 2014 , 63 ( 15 ): 1 - 11 .
LIU S H , JI X S , LIU C X , et al . A complex network evolution model for network growth promoted by information transmission [J ] . Acta Physica Sinica , 2014 , 63 ( 15 ):158902.
王凯 , 刘树新 , 陈鸿昶 , 等 . 一种基于节点间资源承载度的链路预测方法 [J ] . 电子与信息学报 , 2019 , 41 ( 5 ): 1225 - 1234 .
WANG K , LIU S X , CHEN H C , et al . A new link prediction method for complex networks based on resources carrying capacity between nodes [J ] . Journal of Electronics and Information Technology , 2019 , 41 ( 5 ): 1225 - 1234 .
刘树新 , 季新生 , 刘彩霞 , 等 . 局部拓扑信息耦合促进网络演化 [J ] . 电子与信息学报 , 2016 , 38 ( 9 ): 2180 - 2187 .
LIU S H , JI X S , LIU C X , et al . Information coupling of local topology promoting the network evolution [J ] . Journal of Electronics and Information Technology , 2016 , 38 ( 9 ): 2180 - 2187 .
VON M C , JENSEN L J , SNEL B , et al . STRING:known and predicted protein-protein associations,integrated and transferred across organisms [J ] . Nucleic Acids Research , 2005 , 33 ( 1 ): 433 - 437 .
SCELLATO S , NOULAS A , MASCOLO C . Exploiting place features in link prediction on location-based social networks [C ] // Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . New York:ACM Press , 2011 : 1046 - 1054 .
HOLLAND P W , LASKEY K B , LEINHARDT S . Stochastic blockmodels:first steps [J ] . Social Networks , 1983 , 5 ( 2 ): 109 - 137 .
LORRAIN F , WHITE H C . Structural equivalence of individuals in social networks [J ] . Social Networks , 1977 , 1 ( 1 ): 67 - 98 .
ADAMIC L A , ADAR E . Friends and neighbors on the Web [J ] . Social Networks , 2003 , 25 ( 3 ): 211 - 230 .
CANNISTRACI C V , ALANIS-LOBATO G , RAVASI T . From link-prediction in brain connectomes and protein interactomes to the local-community-paradigm in complex networks [J ] . Scientific Reports , 2013 ( 3 ):1613.
ZHOU T,LÜ L Y , ZHANG Y C . Predicting missing links via local information [J ] . The European Physical Journal B , 2009 , 71 ( 4 ): 623 - 630 .
LYU L , JIN C H , ZHOU T . Similarity index based on local paths for link prediction of complex networks [J ] . Physical Review E , 2009 , 80 ( 4 ):046122.
LIU S H , JI X S , LIU C X , et al . Extended resource allocation index for link prediction of complex network [J ] . Physica A:Statistical Mechanics and its Applications , 2017 , 479 : 174 - 183 .
LI X , LIU S X , CHEN H C , et al . A potential information capacity index for link prediction of complex networks based on the cannikinlaw [J ] . Entropy , 2019 , 21 ( 9 ):863.
KATZ L . A new status index derived from sociometric analysis [J ] . Psychometrika , 1953 , 18 ( 1 ): 39 - 43 .
KLEIN D J , RANDIĆ M . Resistance distance [J ] . Journal of Mathematical Chemistry , 1993 , 12 ( 1 ): 81 - 95 .
FOUSS F , PIROTTE A , RENDERS J M , et al . Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation [J ] . IEEE Transactions on Knowledge and Data Engineering , 2007 , 19 ( 3 ): 355 - 369 .
MELAMED D , HARRELL A , SIMPSON B . Cooperation,clustering,and assortative mixing in dynamic networks [J ] . Proceedings of the National Academy of Sciences , 2018 , 115 ( 5 ): 951 - 956 .
WU Y , YU H , ZHANG J , et al . USI-AUC:an evaluation criterion of community detection based on a novel link-prediction method [J ] . Intelligent Data Analysis , 2018 , 22 ( 2 ): 439 - 462 .
CHUAN P M , ALI M , KHANG T D , et al . Link prediction in co-authorship networks based on hybrid content similarity metric [J ] . Applied Intelligence , 2018 , 48 ( 8 ): 2470 - 2486 .
GOPAL S . The evolving social geography of blogs [M ] . Berlin : SpringerPress , 2007 : 275 - 293 .
ULANOWICZ R E , DEANGELIS D L . Network analysis of trophic dynamics in South Florida ecosystems [J ] . US Geological Survey Program on the South Florida Ecosystem , 2005 , 114 : 45 - 47 .
WATTS D J , STROGATZ S H . Collective dynamics of ‘small-world’ Networks [J ] . Nature , 1998 , 393 ( 6684 ):440
GUIMERA R , DANON L , DIAZ-GUILERA A , et al . Self-similar Community structure in a network of human interactions [J ] . Physical Review E , 2003 , 68 ( 6 ):065103.
ADAMIC L A , GLANCE N . The political blogosphere and the 2004 US election:divided they blog [C ] // Proceedings of the 3rd International Workshop on Link Discovery . New York:ACM Press , 2005 : 36 - 43 .
BATAGELJ V , MRVAR A . Pajek-program for large network analysis [J ] . Connections , 1998 , 21 ( 2 ): 47 - 57 .
LYU L Y , PAN L M , ZHOU T , et al . Toward link predictability of complex networks [J ] . Proceedings of the National Academy of Sciences , 2015 , 112 ( 8 ): 2325 - 2330 .
ISELLA L , STEHLÉ J , BARRAT A , et al . What's in a crowd? analysis of face-to-face behavioral networks [J ] . Journal of Theoretical Biology , 2011 , 271 ( 1 ): 166 - 180 .
GUIMERA R , AMARAL L A N . Functional cartography of complex metabolic networks [J ] . Nature , 2005 , 433 ( 7028 ):895.
0
浏览量
875
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构