浏览全部资源
扫码关注微信
河北大学网络空间安全与计算机学院,河北 保定 071002
[ "杨晓晖(1975- ),男,河北巨鹿人,博士,河北大学教授、硕士生导师,主要研究方向为分布计算、信息安全与可信计算" ]
[ "刘晓明(1993- ),男,河北望都人,河北大学硕士生,主要研究方向为分布式计算与信息安全" ]
网络出版日期:2020-08,
纸质出版日期:2020-08-25
移动端阅览
杨晓晖, 刘晓明. 基于双向邻居修正的局部异常因子算法[J]. 通信学报, 2020,41(8):130-140.
Xiaohui YANG, Xiaoming LIU. Local outlier factor algorithm based on correction of bidirectional neighbor[J]. Journal on communications, 2020, 41(8): 130-140.
杨晓晖, 刘晓明. 基于双向邻居修正的局部异常因子算法[J]. 通信学报, 2020,41(8):130-140. DOI: 10.11959/j.issn.1000-436x.2020119.
Xiaohui YANG, Xiaoming LIU. Local outlier factor algorithm based on correction of bidirectional neighbor[J]. Journal on communications, 2020, 41(8): 130-140. DOI: 10.11959/j.issn.1000-436x.2020119.
针对现有离群点检测算法存在参数选取困难、效率差和精度低等问题,提出了基于双向邻居修正的局部异常因子算法。为了解决所提问题,首先提出了基于双向邻居的搜索算法,降低邻居搜索占用时间,然后使用双向邻居的修剪算法减少参数输入以及不必要的异常值计算。同时提出了基于双向邻居的修正因子,并利用反向邻居进一步提高计算精度。实验结果表明,所提算法减少了参数选取,提高了时间效率,同时基于双向邻居的修正因子使算法在合成数据集和UCI数据集上的准确率更高。
A local outlier factor algorithm based on bidirectional neighbor correction was proposed to solve the problems of existing outlier detection algorithms such as difficulty in parameter selection
poor efficiency and low accuracy.The bidirectional neighbor searching algorithm was used to reduce the neighbor search time.Then the bidirectional neighbor pruning algorithm was used to reduce the number of parameters and unnecessary calculations.And the correction factor based on bidirectional neighbors was used to improve the calculation accuracy.Experimental results show that the proposed algorithm has better performance in parameter selection and time efficiency than other outlier detection methods.The correction factor improves the accuracy of the algorithm
in the synthetic data set and UCI data set.
MALINI N , PUSHPA M . Analysis on credit card fraud identification techniques based on KNN and outlier detection [C ] // Third International Conference on Advances in Electrical . Piscataway:IEEE Press , 2017 , 255 - 258 .
杨加 , 李笑难 , 张扬 , 等 . 基于大数据分析的校园电子邮件异常行为检测技术研究 [J ] . 通信学报 , 2018 , 39 ( z1 ): 116 - 123 .
YANG J , LI X N , ZHANG Y , et al . Abnormal behavior detection for campus email systems based on big data analysis [J ] . Journal on Communications , 2018 , 39 ( z1 ): 116 - 123 .
GUO J , HUANG W , WILLIAMS B M . Real time traffic flow outlier detection using short-term traffic conditional variance prediction [J ] . Transportation Research Part C:Emerging Technologies , 2015 ,( 50 ): 160 - 172 .
SCHUBERT E , ZIMEK A , KRIEGEL H P . Local outlier detection reconsidered:a generalized view on locality with applications to spatial video,and network outlier detection [J ] . Data Mining and Knowledge Discovery , 2014 , 28 ( 1 ): 190 - 237 .
琚安康 , 郭渊博 , 李涛 , 等 . 基于网络通信异常识别的多步攻击检测方法 [J ] . 通信学报 , 2019 , 40 ( 7 ): 57 - 66 .
JU A K , GUO Y B , LI T , et al . Multi-step attack detection method based on network communication anomaly recognition [J ] . Journal on Communications , 2019 , 40 ( 7 ): 57 - 66 .
KIM G , LEE S , KIM S . A novel hybrid intrusion detection method integrating anomaly detection with misuse detection [J ] . Expert Systems with Applications , 2014 , 41 ( 4 ): 1690 - 1700 .
丁兆云 , 周斌 , 贾焰 , 等 . 微博中基于统计特征与双向投票的垃圾用户发现 [J ] . 计算机研究与发展 , 2013 , 50 ( 11 ): 2336 - 2348 .
DING Z Y , ZHOU B , JIA Y , et al . Detecting spammers with a bidirectional vote algorithm based on statistical features in microblogs [J ] . Journal of Computer Research and Development , 2013 , 50 ( 11 ): 2336 - 2348 .
KONTAKI M , GOUNARIS A , PAPADOPOULOS A N , et al . Efficient and flexible algorithms for monitoring distance-based outliers over data streams [J ] . Information Systems , 2016 , 55 : 37 - 53 .
CHEN H , FU Y , ZHENG Y . Survey on big data analysis algorithms for network security measurement [J ] . Network and System Security,2017 , 1039 , 4 : 128 - 142 .
DU H , ZHAO S , ZHANG D , et al . Novel clustering-based approach for local outlier detection [C ] // IEEE International Conference on Computer Communications Workshops . Piscataway:IEEE Press , 2016 : 802 - 811 .
PEROZZI B , AKOGLU L , IGLESIAS SÁNCHEZ P , et al . Focused clustering and outlier detection in large attributed graphs [C ] // Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining . New York:ACM Press , 2014 : 1346 - 1355 .
LIU F T , TING K M , ZHOU Z H . Isolation-based anomaly detection [J ] . ACM Transactions on Knowledge Discovery from Data , 2012 , 6 ( 1 ): 1 - 39 .
WANG P , LI W , GAO Z , et al . Action recognition from depth maps using deep convolutional neural networks [J ] . IEEE Transactions on Human-Machine Systems , 2016 , 46 ( 4 ): 498 - 509 .
HOULE M E , SCHUBERT E , ZIMEK A . On the correlation between local intrinsic dimensionality and outlierness [J ] . International Conference on Similarity Search and Applications , 2018 , 11223 : 177 - 191 .
TANG B , HE H . A local density-based approach for local outlier detection [J ] . Pattern Recognition Letters , 2017 , 241 : 171 - 180 .
BREUNIG M M , KRIEGEL H P , NG R T , et al . LOF:identifying density-based local outliers [C ] // Proceedings of the 2000 ACM SIGMOD international conference on Management of data . New York:ACM Press , 2000 : 93 - 104 .
HA J , SEOK S , LEE J S . Robust outlier detection using the instability factor [J ] . Knowledge-Based Systems , 2014 , 63 : 15 - 23 .
JIN W , TUNG A K H , HAN J , et al . Ranking outliers using symmetric neighborhood relationship [J ] . Lecture Notes in Computer Science , 2007 , 3918 : 577 - 593 .
ZHU Q , FENG J , HUANG J . Natural neighbor:a self-adaptive neighborhood method without parameter K [J ] . Pattern Recognition Letters , 2016 , 80 : 30 - 36 .
CHENG D , ZHU Q , HUANG J , et al . Natural neighbor-based clustering algorithm with local representatives [J ] . Knowledge-Based Systems , 2017 , 123 : 238 - 253 .
HUANG J , ZHU Q , YANG L , et al . A non-parameter outlier detection algorithm based on natural neighbor [J ] . Knowledge-Based Systems , 2016 , 92 ( C ): 71 - 77 .
YANG L , ZHU Q , HUANG J , et al . Adaptive edited natural neighbor algorithm [J ] . Neurocomputing , 2017 , 230 : 427 - 433 .
NING J , CHEN L , ZHOU C , et al . Parameter k search strategy in outlier detection [J ] . Pattern Recognition Letters , 2018 , 112 : 56 - 62 .
AUSKALNIS J , PAULAUSKAS N , BASKYS A . Application of local outlier factor algorithm to detect anomalies in computer network [J ] . Elektronika Ir Elektrotechnika , 2018 , 24 ( 3 ): 96 - 99 .
NA G S , KIM D , YU H . DILOF:Effective and memory efficient local outlier detection in data streams [C ] // Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining . New York:ACM Press , 2018 : 1993 - 2002 .
YAO H , FU X , YANG Y , et al . An incremental local outlier detection method in the data stream [J ] . Applied Sciences , 2018 , 8 ( 8 ): 1248 - 1256
YANG P , WANG D , WEI Z , et al . An outlier detection approach based on improved self-organizing feature map clustering algorithm [J ] . IEEE Access , 2019 , 7 : 115914 - 115925 .
GAO J , JI W , ZHANG L , et al . Cube-based incremental outlier detection for streaming computing [J ] . Information Sciences , 2020 , 517 : 361 - 376
ZHAO Y , HRYNIEWICKI M K . XGBOD:improving supervised outlier detection with unsupervised representation learning [C ] // 2018 International Joint Conference on Neural Networks (IJCNN) . Piscataway:IEEE Press , 2018 : 1 - 8 .
0
浏览量
828
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构