浏览全部资源
扫码关注微信
1. 大连理工大学汽车工程学院,辽宁 大连 116024
2. 大连理工大学工业装备结构分析国家重点实验室,辽宁 大连 116024
[ "李琳辉(1981- ),男,河南辉县人,博士,大连理工大学副教授,主要研究方向为智能车辆环境感知、规划决策与导航控制等" ]
[ "周彬(1997- ),男,山东临沂人,大连理工大学硕士生,主要研究方向为智能车辆规划决策、轨迹预测等" ]
[ "连静(1980- ),女,吉林公主岭人,博士,大连理工大学副教授,主要研究方向为新能源汽车智能化、轨迹预测等" ]
[ "周雅夫(1962- ),男,辽宁大连人,大连理工大学教授,主要研究方向为新能源汽车动力控制、新能源汽车网联化等" ]
网络出版日期:2020-06,
纸质出版日期:2020-06-25
移动端阅览
李琳辉, 周彬, 连静, 等. 基于社会注意力机制的行人轨迹预测方法研究[J]. 通信学报, 2020,41(6):175-183.
Linhui LI, Bin ZHOU, Jing LIAN, et al. Research on pedestrian trajectory prediction method based on social attention mechanism[J]. Journal on communications, 2020, 41(6): 175-183.
李琳辉, 周彬, 连静, 等. 基于社会注意力机制的行人轨迹预测方法研究[J]. 通信学报, 2020,41(6):175-183. DOI: 10.11959/j.issn.1000-436x.2020100.
Linhui LI, Bin ZHOU, Jing LIAN, et al. Research on pedestrian trajectory prediction method based on social attention mechanism[J]. Journal on communications, 2020, 41(6): 175-183. DOI: 10.11959/j.issn.1000-436x.2020100.
为提高行人交互中轨迹预测速度、精度与模型可解释性,提出了一种基于社会注意力机制的GAN模型。首先,定义了一种新型社会关系,对行人间的影响进行社会关系建模,设计了基于注意力机制的网络模型,提高了网络预测速度和可解释性。然后,探索不同池化汇集机制对预测结果的影响,确定性能优异的池化模型。最后,搭建了轨迹预测网络,并在UCY和ETH数据集中进行训练。实验结果表明,所提模型预测精度优于现有方法,且实时性较现有方法提升18.3% 。
In order to improve the speed
accuracy and model interpretability of trajectory prediction in pedestrian interaction
a GAN model based on social attention mechanism was proposed.Firstly
a new type of social relationship on pedestrians was defined to model social relationships and a network model based on the attention mechanism was designed to improve the speed and interpretability of network prediction.Secondly
the influence of different pooling mechanisms on the prediction results was explored to determine the pooling model with excellent performance.Finally
a trajectory prediction network was built on this basis and trained on the UCY and ETH data sets.The experimental results show that the model not only has better prediction accuracy than the existing methods
but also improves the real-time performance by 18.3% compared with the existing methods.
DAI M , WANG J , YIN G , et al . Dynamic output-feedback robust control for vehicle path tracking considering different human drivers' characteristics [C ] // Technical Committee on Control Theory . Piscataway:IEEE Press , 2017 : 1157 - 1162 .
MEHDI M , NIRIASKA P , SIMON G , et al . The walking behaviour of pedestrian social groups and its impact on crowd dynamics [J ] . Plos One , 2010 , 5 ( 4 ):e10047.
KITANI K , ZIEBART B , BAGNELL J A , et al . Activity forecasting [C ] // Proceedings of the 12th European conference on Computer Vision - Volume Part IV . Berlin:Springer , 2012 : 201 - 214 .
LEE N , CHOI W , VERNAZA P , et al . Desire:distant future prediction in dynamic scenes with interacting agents [C ] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2017 : 336 - 345 .
YAMAGUCHI K , BERG A C , ORTIZ L E , et al . Who are you with and where are you going? [C ] // Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2011 : 1345 - 1352 .
HOCHREITER S , SCHMIDHUBER J . Long short-term memory [J ] . Neural Computation , 1997 , 9 ( 8 ): 1735 - 1780 .
VEMULA A , MUELLING K , OH J . Social attention:modeling attention in human crowds [C ] // 2018 IEEE International Conference on Robotics and Automation . Piscataway:IEEE Press , 2018 : 1 - 7 .
ALAHI A , GOEL K , RAMANATHAN V , et al . Social LSTM:human trajectory prediction in crowded spaces [C ] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2016 : 961 - 971 .
GUPTA A , JOHNSON J,FEI-FEI L , et al . Social GAN:socially acceptable trajectories with generative adversarial networks [C ] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2018 : 2255 - 2264 .
GOODFELLOW I , POUGET-ABADIE J , MIRZA M , et al . Generative adversarial nets [C ] // Advances in Neural Information Processing Systems . Cambridge:MIT Press , 2014 : 2672 - 2680 .
SADEGHIAN A , KOSARAJU V , SADEGHIAN A , et al . SoPhie:an attentive GAN for predicting paths compliant to social and physical constraints [J ] . ArXiv Preprint,ArXiv:1806.01482 , 2018
VINEET K , AMIR S , ROBERTO M , et al . Social-BiGAT:multimodal trajectory forecasting using bicycle-GAN and graph attention networks [J ] . ArXiv Preprint ArXiv:1907.03395 , 2019
PETAR V , GUILLEM C , ARANTXA C , et al . Graph attention networks [J ] . CoRR,abs/1710.10903 , 2018
MNIH V , HEESS N , GRAVES A , et al . Recurrent models of visual attention [C ] // Proceedings of the 27th International Conference on Neural Information Processing Systems . 2014 : 2204 - 2212 .
KINGMA D P , WELLING M . Auto-encoding variational Bayes [J ] . ArXiv preprint,ArXiv:1312.6114 , 2013
VASWANI A , SHAZEER N , PARMAR N , et al . Attention is all you need [C ] // Advances in Neural Information Processing Systems . Cambridge:MIT Press , 2017 : 5998 - 6008 .
孙亚圣 , 姜奇 , 胡洁 , 等 . 基于注意力机制的行人轨迹预测生成模型 [J ] . 计算机应用 , 2019 , 39 ( 3 ): 668 - 674 .
SUN Y S , JIANG Q , HU J , et al . Attention mechanism based pedestrian trajectory prediction generation model [J ] . Journal of Computer Applications , 2019 , 39 ( 3 ): 668 - 674 .
XU K , BA J , KIROS R , et al . Show,attend and tell:neural image caption generation with visual attention [J ] . ArXiv Preprint,ArXiv:1502.03044 , 2015
MIRZA M , OSINDERO S . Conditional generative adversarial nets [J ] . ArXiv Preprint,ArXiv:1411.1784 , 2014
XU Q , HUANG G , YUAN Y , et al . An empirical study on evaluation metrics of generative adversarial networks [J ] . ArXiv Preprint,ArXiv:1806.07755 , 2018
PELLEGRINI S , ESS A , VAN GOOL L . Improving data association by joint modeling of pedestrian trajectories and groupings [C ] // European Conference on Computer Vision . Berlin:Springer , 2010 : 452 - 465 .
LERNER A , CHRYSANTHOU Y , LISCHINSKI D . Crowds by example [J ] . Computer Graphics Forum , 2007 , 26 ( 3 ): 655 - 664 .
ABDUALLAH M , KUN Q , MOHAMED E , et al . Social-STGCNN:a social spatio-temporal graph convolutional neural network for human trajectory prediction [C ] // IEEE Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2020 .
HE Z , CHOW C , ZHANG J . STCNN:a spatio-temporal convolutional neural network for long-term traffic prediction [C ] // 2019 20th IEEE International Conference on Mobile Data Management . Piscataway:IEEE Press , 2019 : 226 - 233 .
0
浏览量
1907
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构