浏览全部资源
扫码关注微信
1. 河海大学计算机与信息学院, 江苏 南京 211100
2. 日本九州工业大学机械智能工学研究系, 北九州 804-8550
[ "陈哲(1983- ),男, 江苏徐州人,博士,河海大学副教授,主要研究方向为智能信息获取与处理、模式识别与复杂系统" ]
[ "胡玉其(1996- ),男,山东济宁人,河海大学硕士生,主要研究方向为智能信号处理、故障诊断" ]
[ "田世庆(1997- ),男,江苏南通人,河海大学硕士生,主要研究方向为大数据分析、数据挖掘、故障诊断" ]
[ "陆慧敏(1982- ),男,江苏扬州人,日本九州工业大学副教授,主要研究方向为机器视觉、共融机器人、人工智能、物联网和海洋观测" ]
[ "徐立中(1958- ),男,山东东营人,博士,河海大学教授、博士生导师,主要研究方向为遥感遥测信号处理、多源传感器信息融合、信息处理系统及应用、系统建模与仿真" ]
网络出版日期:2020-05,
纸质出版日期:2020-05-25
移动端阅览
陈哲, 胡玉其, 田世庆, 等. 基于非平稳信号组合分析的故障诊断方法[J]. 通信学报, 2020,41(5):187-195.
Zhe CHEN, Yuqi HU, Shiqing TIAN, et al. Non-stationary signal combined analysis based fault diagnosis method[J]. Journal on communications, 2020, 41(5): 187-195.
陈哲, 胡玉其, 田世庆, 等. 基于非平稳信号组合分析的故障诊断方法[J]. 通信学报, 2020,41(5):187-195. DOI: 10.11959/j.issn.1000-436x.2020099.
Zhe CHEN, Yuqi HU, Shiqing TIAN, et al. Non-stationary signal combined analysis based fault diagnosis method[J]. Journal on communications, 2020, 41(5): 187-195. DOI: 10.11959/j.issn.1000-436x.2020099.
鉴于深度学习、频谱、时频分析方法间的优势互补,设计了由卷积网络、傅里叶变换和小波包分解组合的多流分析处理框架,对非平稳信号进行组合分析。提出了一种基于非平稳信号组合分析的故障诊断方法,提取信号的多属性特征并加权融合。应用于故障诊断的实验结果表明,所提出的信号组合分析方法能够更加稳定、准确地刻画故障类型,在不显著增加计算复杂度的前提下有效提高了故障诊断的分类准确率。
Considering the complementarity between the deep learning
spectrum and time frequency analysis methods
a multi-stream framework was designed by combining the convolutional network
Fourier transform and wavelet package decomposition methods
with the aim to analyze the non-stationary signal.Accordingly
a none-stationary signal combined analysis based fault diagnosis method was proposed to extract features in difference aspects.The fault diagnosis experiments demonstrate that the combined analysis method can efficiently and stably depict the fault and significantly improve the performance of fault diagnosis.
JIA F , LEI Y , LIN J , et al . Deep neural networks:a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data [J ] . Mechanical Systems & Signal Processing , 2016 ,( 72-73 ): 303 - 315 .
张云强 , 张培林 , 吴定海 , 等 . 基于CSLBP的轴承信号时频特征提取方法 [J ] . 振动、测试与诊断 , 2016 , 36 ( 1 ): 22 - 27 .
ZHANG Y Q , ZHANG P L , WU D H , et al . Time-frequency feature extraction method based on CS-LBP for bearing signals [J ] . Journal of Vibration Measurement & Diagnosis , 2016 , 36 ( 1 ): 22 - 27 .
HARMOUCHE J , DELPHA C , DIALLO D . Improved fault diagnosis of ball bearings based on the global spectrum of vibration signals [J ] . IEEE Transactions on Energy Conversion , 2015 , 30 ( 1 ): 376 - 383 .
YUAN J , JI F , GAO Y , et al . Integrated ensemble noise-reconstructed empirical mode decomposition for mechanical fault detection [J ] . Mechanical Systems and Signal Processing , 2018 , 104 : 323 - 346 .
WANG W , LIU Z . A novel fault diagnosis method based on time-frequency image recognition [J ] . Applied Mechanics & Materials , 2014 , 687-691 : 3569 - 3573 .
WANG Y , LIANG M . An adaptive SK technique and its application for fault detection of rolling element bearings [J ] . Mechanical systems and signal processing , 2011 , 25 ( 5 ): 1750 - 1764 .
LI F , MENG G , YE L , et al . Wavelet transform-based higher-order statistics for fault diagnosis in rolling element bearings [J ] . Journal of Vibration and Control , 2008 , 14 ( 11 ): 1691 - 1709 .
FADDA M L , MOUSSAOUI A . Hybrid SOM-PCA method for modeling bearing faults detection and diagnosis [J ] . Journal of the Brazilian Society of Mechanical Sciences and Engineering , 2018 , 40 ( 5 ): 1 - 8 .
HE W , ZI Y , CHEN B , et al . Automatic fault feature extraction of mechanical anomaly on induction motor bearing using ensemble super-wavelet transform [J ] . Mechanical Systems & Signal Processing , 2015 ( 54-55 ): 457 - 480 .
苏祖强 , 汤宝平 , 姚金宝 . 基于敏感特征选择与流形学习维数约简的故障诊断 [J ] . 振动与冲击 , 2014 , 33 ( 3 ): 70 - 75 .
SU Z Q , TANG B P , YAO J B , et al . Fault diagnosis method based on sensitive feature selection and manifold learning dimension reduction [J ] . Journal of Vibration and Shock , 2014 , 33 ( 3 ): 70 - 75 .
赵光权 , 葛强强 , 刘小勇 , 等 . 基于 DBN 的故障特征提取及诊断方法研究 [J ] . 仪器仪表学报 , 2016 , 37 ( 9 ): 1946 - 1953 .
ZHAO G Q , GE Q Q , LIU X Y , et al . Fault feature extraction and diagnosis method based on deep belief network [J ] . Chinese Journal of Scientific Instrument , 2016 , 37 ( 9 ): 1946 - 1953 .
WEN L , GAO L , LI X . A new deep transfer learning based on sparse auto-encoder for fault diagnosis [J ] . IEEE Transactions on Systems,Man,and Cybernetics:Systems , 2017 ( 99 ): 1 - 9 .
LU C , WANG Z Y , QIN W L , et al . Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification [J ] . Signal Processing , 2017 , 130 ( C ): 377 - 388 .
INCE T , KIRANYAZ S , EREN L , et al . Real-time motor fault detection by 1-D convolutional neural networks [J ] . IEEE Transactions on Industrial Electronics , 2016 , 63 ( 11 ): 7067 - 7075 .
CHEN Z Q , LI C , SANCHEZ R V . Gearbox fault identification and classification with convolutional neural networks [J ] . Shock & Vibration , 2015 , 2015 ( 2 ): 1 - 10 .
ZHANG W , PENG G , LI C , et al . A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals [J ] . Sensors , 2017 , 17 ( 2 ): 1 - 12 .
JANSSENS O , SLAVKOVIKJ V , VERVISCH B , et al . Convolutional neural network based fault detection for rotating machinery [J ] . Journal of Sound and Vibration , 2016 , 377 : 331 - 345 .
ZAN T , WANG H , WANG M , et al . Application of multi-dimension input convolutional neural network in fault diagnosis of rolling bearings [J ] . Applied Sciences , 2019 , 9 ( 13 ): 1 - 18 .
WANG J , HE Q B . Wavelet packet envelope manifold for fault diagnosis of rolling element bearings [J ] . IEEE Transactions on Instrumentation and Measurement , 2016 , 65 ( 11 ): 2515 - 2526 .
ZHANG H , PENG X , YI Z . FIRR:fast low-rank representation using Frobenius-norm [J ] . Electronics Letters , 2014 , 50 ( 13 ): 936 - 938 .
CHEN Z Q , DENG S C , CHEN X D , et al . Deep neural networks-based rolling bearing fault diagnosis [J ] . Microelectronics Reliability , 2017 , 75 : 327 - 333 .
SHAO H D , JIANG H K , ZHANG H Z , et al . Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing [J ] . Mechanical Systems and Signal Processing , 2018 , 100 : 743 - 765 .
JIANG G Q , HE H B , XIE P , et al . Stacked multilevel-denoising autoencoders:a new representation learning approach for wind turbine gearbox fault diagnosis [J ] . IEEE Transactions on Instrumentation and Measurement , 2017 , 66 ( 9 ): 2391 - 2402 .
SHARMA R K , SUGUMARAN V , KUMAR H , et al . A comparative study of naïve Bayes classifier and Bayes net classifier for fault diagnosis of roller bearing using sound signal [J ] . International Journal of Decision Support Systems , 2015 , 1 ( 1 ): 115 - 129 .
GANGSAR P , TIWARI R . Multiclass fault taxonomy in rolling bearings at interpolated and extrapolated speeds based on time domain vibration data by SVM algorithms [J ] . Journal of Failure Analysis &Prevention , 2014 , 14 ( 6 ): 826 - 837 .
SADOUGHI M , HU C . Physics-based convolutional neural network for fault diagnosis of rolling element bearings [J ] . IEEE Sensors Journal , 2019 , 19 ( 11 ): 4181 - 4192 .
JIANG G Q , HE H B , YAN J , et al . Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox [J ] . IEEE Transactions on Industrial Electronics , 2019 , 66 ( 4 ): 3196 - 3207 .
HUANG W Y , CHEN J S , YANG Y , et al . An improved deep convolutional neural network with multi-scale information for bearing fault diagnosis [J ] . Neurocomputing , 2019 , 359 : 77 - 92 .
0
浏览量
1051
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构