浏览全部资源
扫码关注微信
黑龙江大学电子工程学院,黑龙江 哈尔滨 150080
[ "王晓飞(1977- ),男,黑龙江哈尔滨人,博士,黑龙江大学副教授,主要研究方向为高光谱数据分析和图像处理、多源信息融合、模式识别和分类" ]
[ "胡凡奎(1996- ),男,山东济宁人,黑龙江大学硕士生,主要研究方向为遥感图像处理" ]
[ "黄硕(1994- ),男,黑龙江哈尔滨人,黑龙江大学硕士生,主要研究方向为遥感图像处理" ]
网络出版日期:2020-05,
纸质出版日期:2020-05-25
移动端阅览
王晓飞, 胡凡奎, 黄硕. 基于分布信息直觉模糊c均值聚类的红外图像分割算法[J]. 通信学报, 2020,41(5):120-129.
Xiaofei WANG, Fankui HU, Shuo HUANG. Infrared image segmentation algorithm based on distribution information intuitionistic fuzzy c-means clustering[J]. Journal on communications, 2020, 41(5): 120-129.
王晓飞, 胡凡奎, 黄硕. 基于分布信息直觉模糊c均值聚类的红外图像分割算法[J]. 通信学报, 2020,41(5):120-129. DOI: 10.11959/j.issn.1000-436x.2020071.
Xiaofei WANG, Fankui HU, Shuo HUANG. Infrared image segmentation algorithm based on distribution information intuitionistic fuzzy c-means clustering[J]. Journal on communications, 2020, 41(5): 120-129. DOI: 10.11959/j.issn.1000-436x.2020071.
针对传统的直觉模糊c均值聚类算法进行图像分割时对聚类中心敏感导致最终聚类精度低、细节保留性差、时间复杂度较大等不足,提出了一种适用于电力设备红外图像分割的基于分布信息的直觉模糊c均值聚类算法。红外图像中高强度的非目标对象与图像强度不均匀对图像分割有较强干扰,所提算法能有效抑制该干扰。首先,将高斯模型引入电力设备的全局空间分布信息中以改进IFCM算法;其次,利用局部空间信息的空间算子优化隶属函数来解决边缘模糊和图像强度不均匀问题。经过对Terravic动态红外数据库与包含300 幅电力设备红外图像的数据集进行实验,相对区域错误率在10%左右,受模糊因子m变化影响较小,验证了所提算法在有效性与适用性上明显优于其他对比算法。
Due to the sensitivity of the traditional intuitionistic fuzzy c-means (IFCM) clustering algorithm to the clustering center in image segmentation
which resulted in the low clustering precision
poor retention of details
and large time complexity
an intuitionistic fuzzy c-means clustering algorithm was proposed based on spatial distribution information suitable for infrared image segmentation of power equipment.The non-target objects with high intensity and the non-uniformity of image intensity in the infrared image had strong interference to the image segmentation
which could be effectively suppressed by the proposed algorithm.Firstly
the Gaussian model was introduced into the global spatial distribution information of power equipment to improve the IFCM algorithm.Secondly
the membership function was optimized by local spatial operator to solve the problem of edge blur and image intensity inhomogeneity.The experiments conducted on Terravic motion IR database and the data set containing 300 infrared images of power equipment show that
the relative region error rate is about 10% and is less affected by the change of fuzzy factor m.The effectiveness and applicability of the proposed algorithm are superior to other comparison algorithms.
徐鹏飞 , 张菁 , 尹腾飞 , 等 . 基于改进 PCNN 算法的电力设备图像分割研究 [J ] . 智能计算机与应用 , 2019 , 9 ( 3 ): 59 - 62 ,68.
XU P F , ZHANG J , YIN T F , et al . Research on image segmentation of power equipment based on improved PCNN algorithm [J ] . Intelligent Computer and Application , 2019 , 9 ( 3 ): 59 - 62 ,68.
余成波 , 曾亮 , 张林 . 基于OTSU和区域生长的电气设备多点故障分割 [J ] . 红外技术 , 2018 , 40 ( 10 ): 1008 - 1012 .
YU C B , ZENG L , ZHANG L . Multi-point fault segmentation of elec-trical equipment based on OTSU and regional growth [J ] . Infrared Technology , 2008 , 40 ( 10 ): 1008 - 1012 .
王智杰 , 牛硕丰 , 刘相兴 , 等 . 蝙蝠算法优化二维熵的变电设备红外图像分割应用研究 [J ] . 电子设计工程 , 2018 , 26 ( 18 ): 83 - 87 .
WANG Z J , NIU S F , LIU X X , et al . Study on application of bat algo-rithm to optimize two-dimensional entropy for infrared image seg-mentation of transformer equipment [J ] . Electronic Design Engineer-ing , 2008 , 26 ( 18 ): 83 - 87 .
李鑫 , 崔昊杨 , 霍思佳 , 等 . 基于粒子群优化法的Niblack电力设备红外图像分割 [J ] . 红外技术 , 2018 , 40 ( 8 ): 780 - 785 .
LI X , CUI H Y , HUO S J , et al . Infrared image segmentation of Nib-lack power equipment based on particle swarm optimization [J ] . Infra-red Technology , 2014 , 40 ( 8 ): 780 - 785 .
KAPIL S , CHAWLA M , ANSARI M D . On K-means data clustering algorithm with genetic algorithm [C ] // Fourth International Conference on Parallel,Distributed and Grid Computing . Piscataway:IEEE Press , 2016 : 202 - 206 .
ATANASSOV K T . Intuitionistic fuzzy sets [J ] . Fuzzy Sets and Systems , 1986 , 20 ( 1 ): 87 - 96 .
PELEKIS N , IAKOVIDIS D K , KOTSIFAKOS E E , et al . Fuzzy Clustering of Intuitionistic Fuzzy Data [J ] . International Journal of Business Intelligence and Data Mining , 2008 , 3 ( 1 ): 45 - 65 .
XU Z , WU J . Intuitionistic fuzzy C-means clustering algorithms [J ] . Journal of Systems Engineering and Electronics , 2010 , 21 ( 4 ): 580 - 90 .
LIN K . A Novel Evolutionary Kernel Intuitionistic Fuzzy C-means Clustering Algorithm [J ] . IEEE Transactions on Fuzzy Systems , 2014 , 22 ( 5 ): 1074 - 1087 .
DANISH LOHANI Q M , SOLANKI R , MUHURI P K . Novel adaptive clustering algorithms based on a probabilistic similarity measure over atanassov intuitionistic fuzzy set [J ] . IEEE Transactions on Fuzzy Systems , 2018 , 26 ( 6 ): 3715 - 3729 .
ZADEH L A . Fuzzy sets [J ] . Information and Control , 1965 , 8 ( 3 ): 338 - 353 .
MENDEL J M . Uncertain rule-based fuzzy logic systems:introduction and new directions [M ] . New Jersey : Prentice HallPress , 2001 .
MENDEL J M . Computing derivatives in interval type-2 fuzzy logic systems [J ] . IEEE Transactions on Fuzzy Systems , 2004 , 12 ( 1 ): 84 - 98 .
ATANASSOV K T . Intuitionistic fuzzy sets [J ] . Fuzzy Sets and Systems , 1986 , 20 ( 1 ): 87 - 96 .
DUNN J C . A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters [J ] . Journal of Cybernetics , 1973 , 3 ( 3 ): 32 - 57 .
BEZDEK J C . Fuzzy mathematics in pattern classification [D ] . Ithaca:Cornell University , 1973 : 142 - 147 .
SUGENO M . Fuzzy measures and fuzzy integrals–a survey [J ] . Readings in Fuzzy Sets for Intelligent Systems , 1993 , 6 ( 1 ): 251 - 257 .
WANG W , XIN X . Distance measure between intuitionistic fuzzy sets [J ] . Pattern Recognition Letters , 2005 , 26 ( 13 ): 2063 - 2069 .
SZMIDT E , KACPRZYK J . Distances between intuitionistic fuzzy sets [J ] . Fuzzy Sets and Systems , 2000 , 114 : 505 - 518 .
WEST G A , CLARK T A . A survey and examination of subpixel measurement techniques [J ] . Proceedings of SPIE-The International Society for Optical Engineering , 1990 , 1395 ( 3 ): 456 - 462 .
BAI X , CHEN Z , ZHANG Y , et al . Infrared ship target segmentation based on spatial information improved FCM [J ] . IEEE Transactions on Cybernetics , 2016 , 46 ( 12 ): 3259 - 3271 .
ZHU H , LU L , FAN Y , et al . Parallel implementation of the FLICM algorithm for SAR image change detection on intel MIC [C ] // 2016 IEEE International Geoscience and Remote Sensing Symposium . Piscataway:IEEE Press , 2016 : 2340 - 2343 .
LIN K , HUNG K , LIN C . Rule generation based on novel kernel intuitionistic fuzzy rough set model [J ] . IEEE Access , 2018 ( 6 ): 11953 - 11958 .
KAUSHAL M , SOLANKI R , LOHANI Q M D , et al . A novel intuitionistic fuzzy set generator with application to clustering [C ] // 2018 IEEE International Conference on Fuzzy Systems . Piscataway:IEEE Press , 2018 : 1 - 8 .
LIU Z , ZHOU F , CHEN X , et al . Iterative infrared ship target segmentation based on multiple features [J ] . Pattern Recognition , 2014 , 47 ( 9 ): 2839 - 2852 .
BAI X , WANG Y , LIU H , et al . Symmetry information based fuzzy clustering for infrared pedestrian segmentation [J ] . IEEE Transactions on Fuzzy Systems , 2018 , 26 ( 4 ): 1946 - 1959 .
FAN Z , WANG C , MA X . Double-threshold image segmentation method based on gray gradient [J ] . Proceedings of SPIE-The International Society for Optical Engineering , 2009 ( 7506 ): 20 - 28 .
0
浏览量
817
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构