浏览全部资源
扫码关注微信
1. 浙江工业大学教育科学与技术学院,浙江 杭州 310023
2. 浙江工业大学计算机科学与技术学院,浙江 杭州 310023
[ "邱飞岳(1965- ),男,浙江诸暨人,博士,浙江工业大学教授、博士生导师,主要研究方向为智能计算、机器学习、虚拟现实等" ]
[ "陈博文(1996- ),男,安徽合肥人,浙江工业大学硕士生,主要研究方向为机器学习与虚拟现实等" ]
[ "陈铁明(1978- ),男,浙江诸暨人,博士,浙江工业大学教授、博士生导师,主要研究方向为网络空间安全与大数据智能分析等" ]
[ "章国道(1988- ),男,浙江衢州人,浙江工业大学博士生,主要研究方向为数据挖掘" ]
网络出版日期:2020-05,
纸质出版日期:2020-05-25
移动端阅览
邱飞岳, 陈博文, 陈铁明, 等. 稀疏诱导流形正则化凸非负矩阵分解算法[J]. 通信学报, 2020,41(5):84-95.
Feiyue QIU, Bowen CHEN, Tieming CHEN, et al. Sparsity induced convex nonnegative matrix factorization algorithm with manifold regularization[J]. Journal on communications, 2020, 41(5): 84-95.
邱飞岳, 陈博文, 陈铁明, 等. 稀疏诱导流形正则化凸非负矩阵分解算法[J]. 通信学报, 2020,41(5):84-95. DOI: 10.11959/j.issn.1000-436x.2020064.
Feiyue QIU, Bowen CHEN, Tieming CHEN, et al. Sparsity induced convex nonnegative matrix factorization algorithm with manifold regularization[J]. Journal on communications, 2020, 41(5): 84-95. DOI: 10.11959/j.issn.1000-436x.2020064.
针对非负矩阵分解方法在有噪声的真实数据中获得特征的有效性问题,提出了一种稀疏诱导的流形正则化凸非负矩阵分解算法。所提算法在流形正则化的基础上,向低维子空间的基矩阵添加基于L<sub>2
1</sub>范数的稀疏约束,构建了乘法更新规则,分析在该规则下算法的收敛性,并设计了在低维子空间上不同噪声环境下的聚类实验。K均值聚类实验结果表明,稀疏约束降低了噪声特征在学习中的表达能力,所提算法在不同程度上优于同类8种算法,对噪声有更强的稳健性。
To address problems that the effectiveness of feature learned from real noisy data by classical nonnegative matrix factorization method
a novel sparsity induced manifold regularized convex nonnegative matrix factorization algorithm (SGCNMF) was proposed.Based on manifold regularization
the L<sub>2
1</sub>norm was introduced to the basis matrix of low dimensional subspace as sparse constraint.The multiplicative update rules were given and the convergence of the algorithm was analyzed.Clustering experiment was designed to verify the effectiveness of learned features within various of noisy environments.The empirical study based on K-means clustering shows that the sparse constraint reduces the representation of noisy features and the new method is better than the 8 similar algorithms with stronger robustness to a variable extent.
DUDA R O , HART P E , STORK D G . Pattern classification,seconded [M ] . New York : John Wiley & SonsPress , 2001 .
LEE D D , SEUNG H S . Learning the parts of objects by non-negative matrix factorization [J ] . Nature , 1999 , 401 ( 6755 ): 788 - 791 .
WU W H , KWONG S , ZHOU Y , et al . Nonnegative matrix factorization with mixed hypergraph regularization for community detection [J ] . Information Sciences , 2018 , 435 ( 4 ): 263 - 281 .
CHEN G F , XU C , WANG J Y , et al . Graph regularization weighted nonnegative matrix factorization for link prediction in weighted complex network [J ] . Neurocomputing , 2019 , 369 ( 12 ): 50 - 60 .
常振超 , 陈鸿昶 , 黄瑞阳 , 等 . 基于非负矩阵分解的半监督动态社团检测 [J ] . 通信学报 , 2016 , 37 ( 2 ): 132 - 143 .
CHANG Z C , CHEN H C , HUANG R Y , et al . Semi-supervised dynamic community detection based on non-negative matrix factorization [J ] . Journal on Communications , 2016 , 37 ( 2 ): 132 - 143 .
LIU R , DU B , ZHANG L P . Hyperspectral unmixing via double abundance characteristics constraints based NMF [J ] . Remote Sensing , 2016 , 8 ( 6 ): 1 - 23 .
WANG H , YANG W J , GUAN N Y . Cauchy sparse NMF with manifold regularization:a robust method for hyperspectral unmixing [J ] . Knowledge-Based Systems , 2019 , 184 ( 104898 ): 1 - 16 .
CHEN W S , LIU J , PAN B , et al . Face recognition using nonnegative matrix factorization with fractional power inner product kernel [J ] . Neurocomputing , 2019 , 348 ( 7 ): 40 - 53 .
YANG Z , CHEN W T , HUANG J . Enhancing recommendation on extremely sparse data with blocks-coupled non-negative matrix factorization [J ] . Neurocomputing , 2018 , 278 ( 2 ): 126 - 133 .
LI S Z , HOU X W , ZHANG H J , et al . Learning spatially localized,parts-based representation [C ] // Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR).Piscataway:IEEE Press . 2001 : 1 - 6 .
ZHAN S , WU J , HAN N , et al . Unsupervised feature extraction by low-rank and sparsity preserving embedding [J ] . Neural Networks , 2019 , 109 ( 1 ): 56 - 66 .
CAI D , HE X F , HAN J H , et al . Graph regularized nonnegative matrix factorization for data representation [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2011 , 33 ( 8 ): 1548 - 1560 .
HUANG S D , WANG H J , LI T , et al . Robust graph regularized nonnegative matrix factorization for clustering [J ] . Data Mining and Knowledge Discovery , 2018 , 32 ( 2 ): 483 - 503 .
LI X L , CUI G , DONG Y . Graph regularized non-negative low-rank matrix factorization for image clustering [J ] . IEEE Transactions on Cybernetics , 2016 , 47 ( 11 ): 3840 - 3853 .
WU B L , WANG E Y , ZHU Z , et al . Manifold NMF with L-21 norm for clustering [J ] . Neurocomputing , 2018 , 273 ( 1 ): 78 - 88 .
ZENG K , YU J , LI C , et al . Image clustering by hyper-graph regularized non-negative matrix factorization [J ] . Neurocomputing , 2014 , 138 ( 8 ): 209 - 217 .
WANG L , ZHANG Z , LIU G C , et al . Robust adaptive low-rank and sparse embedding for feature representation [C ] // International Conference on Pattern Recognition (ICPR) . 2018 : 800 - 805 .
YI Y G , WANG J Z , ZHOU W , et al . Non-negative matrix factorization with locality constrained adaptive graph [J ] . IEEE Transactions on Circuits and Systems for Video Technology , 2020 , 30 ( 2 ): 427 - 441 .
LU G F , WANG Y , ZOU J . Low-rank matrix factorization with adaptive graph regularizer [J ] . IEEE Transactions on Image Processing , 2016 , 25 ( 5 ): 2196 - 2205 .
YIN M , XIE S L , WU Z Z , et al . Subspace clustering via learning an adaptive low-rank graph [J ] . IEEE Transactions on Image Processing , 2018 , 27 ( 8 ): 3716 - 3728 .
DING C H Q , LI T , JORDAN M I . Convex and semi-nonnegative matrix factorizations [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2009 , 32 ( 1 ): 45 - 55 .
WANG S P , PEDRYCZ W , ZHU Q , et al . Subspace learning for unsupervised feature selection via matrix factorization [J ] . Pattern Recognition , 2015 , 48 ( 1 ): 10 - 19 .
HU W J , CHOI K S , WANG P L , et al . Convex non-negative matrix factorization with manifold regularization [J ] . Neural Networks , 2015 , 63 ( 3 ): 94 - 103 .
CUI G S , LI X L , DONG Y S . Subspace clustering guided convex nonnegative matrix factorization [J ] . Neurocomputing , 2018 , 292 ( 5 ): 38 - 48 .
LI G P , ZHANG X Y , ZHENG S Y , et al . Semi-supervised convex non-negative matrix factorizations with graph regularized for image representation [J ] . Neurocomputing , 2017 , 237 ( 5 ): 1 - 11 .
LI Z C , LIU J , TANG J H , et al . Robust structured subspace learning for data representation [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2015 , 37 ( 10 ): 2085 - 2098 .
KONG D G , DING C , HUANG H . Robust non-negative matrix factorization using L21-norm [C ] // 20th ACM Conference on Information and Knowledge Management (CIKM) . New York:ACM Press , 2011 : 673 - 682 .
HOYER P O . Non-negative matrix factorization with sparseness constraints [J ] . Journal of Machine Learning Research , 2004 , 5 ( 1 ): 1457 - 1469 .
张旭 , 陈志奎 , 高静 . 基于图正则化和 l_(1/2)稀疏约束的非负矩阵分解算法 [J ] . 小型微型计算机系统 , 2018 , 39 ( 11 ): 130 - 134 .
ZHANG X , CHEN Z K , GAO J . Nonnegative matrix factorization via graph regularization and l 1 / 2 sparse constraints [J ] . Journal of Chinese Computer Systems , 2018 , 39 ( 11 ): 130 - 134 .
LEE D D , SEUNG H S . Algorithms for non-negative matrix factorization [C ] // Advances in Neural Information Processing Systems (NIPS) . 2001 : 556 - 562 .
WANG Y X , ZHANG Y J . Nonnegative matrix factorization:a comprehensive review [J ] . IEEE Transactions on Knowledge and Data Engineering , 2012 , 25 ( 6 ): 1336 - 1353 .
LUXBURG U V . A tutorial on spectral clustering [J ] . Statistics and Computing , 2007 , 17 ( 4 ): 395 - 416 .
NIE F P , HUANG H , CAI X , et al . Efficient and robust feature selection via joint ℓ2,1-norms minimization [C ] // Advances in Neural Information Processing Systems (NIPS) . 2010 : 1813 - 1821 .
HULL J J . A database for handwritten text recognition research [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 1994 , 16 ( 5 ): 550 - 554 .
CAI D , HE X F , HAN J H . Document clustering using locality preserving indexing [J ] . IEEE Transactions on Knowledge and Data Engineering , 2005 , 17 ( 12 ): 1624 - 1637 .
0
浏览量
1001
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构