浏览全部资源
扫码关注微信
辽宁师范大学计算机与信息技术学院,辽宁 大连 116000
[ "任永功(1972- ),男,辽宁兴城人,博士,辽宁师范大学教授,主要研究方向为人工智能、数据挖掘等" ]
[ "张云鹏(1993- ),男,辽宁沈阳人,辽宁师范大学硕士生,主要研究方向为数据挖掘、推荐系统等" ]
[ "张志鹏(1988- ),男,河南安阳人,博士,辽宁师范大学讲师,主要研究方向为人工智能、大数据分析、推荐系统等" ]
网络出版日期:2020-01,
纸质出版日期:2020-01-25
移动端阅览
任永功, 张云鹏, 张志鹏. 基于粗糙集规则提取的协同过滤推荐算法[J]. 通信学报, 2020,41(1):76-83.
Yonggong REN, Yunpeng ZHANG, Zhipeng ZHANG. Collaborative filtering recommendation algorithm based on rough set rule extraction[J]. Journal on communications, 2020, 41(1): 76-83.
任永功, 张云鹏, 张志鹏. 基于粗糙集规则提取的协同过滤推荐算法[J]. 通信学报, 2020,41(1):76-83. DOI: 10.11959/j.issn.1000-436x.2020028.
Yonggong REN, Yunpeng ZHANG, Zhipeng ZHANG. Collaborative filtering recommendation algorithm based on rough set rule extraction[J]. Journal on communications, 2020, 41(1): 76-83. DOI: 10.11959/j.issn.1000-436x.2020028.
基于现实推荐系统数据集非常稀疏,导致传统的协同过滤算法往往无法提供高质量推荐的问题,提出了一种基于粗糙集规则提取的协同过滤算法。首先利用用户/物品属性和用户-物品评分矩阵构建决策表,然后通过决策表约简算法得到每一条规则的核值,最后根据核值表的核值决策规则,完成所有决策规则的约简,从而实现对未评分的用户进行预测评分。实验结果表明,所提方法可以有效地缓解稀疏数据对协同过滤带来的负面影响,提高推荐结果的准确度。
To address the problem that in a practical recommendation system (RS)
because of the datasets are often very sparse
the traditional collaborative filtering (CF) approach cannot provide recommendations with higher quality
a novel CF based on rough set rule extraction was proposed.Firstly
the attributes of user/item and the user-item rating matrix were used to construct a decision table.Then
the core value of each rule in the table was extracted through using the decision table reduction algorithm.Finally
according to the nuclear value decision rule of the core value table
the reductions of all decision rules were utilized to predict the rating scores of un-rated items.Experimental results suggest that the proposed approach can alleviate the data sparsity problem of CF
and provide recommendations with higher accuracy.
BOBADILLA J , ORTEGA F , HERNANDO A , et al . Recommender systems survey [J ] . Knowledge-Based Systems , 2013 , 46 ( 1 ): 109 - 132 .
GOLDBERG D , NICHOLS D , OKI B M , et al . Using collaborative filtering to weave an information tapestry [J ] . Communications of the ACM , 1992 , 35 ( 12 ): 61 - 70 .
ARWAR B , KARYPIS G , KONSTAN J , et al . Item-based collabora tive filtering recommendation algorithms [C ] // The 10th International Conference on World Wide Web . 2001 : 285 - 295 .
ADOMAVICIUS G , TUZHILIN A . Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extensions [J ] . IEEE Transactions on Knowledge and Data Engineering , 2005 , 17 ( 6 ): 734 - 749 .
BREESE J , HECHERMAN D , KADIE C . Empirical analysis of predictive algorithms for collaborative filtering [C ] // The 14th Conference on Uncertainty in Artificial Intelligence (UAI-98) . 1998 : 43 - 52 .
CHOI K , SUH Y . A new similarity function for selecting neighbors for each target item in collaborative filtering [J ] . Knowledge-Based Systems , 2013 , 37 : 146 - 153 .
WANG J , VRIES A P D , REINDERS M J T . Unifying user-based and item-based collaborative filtering approaches by similarity fusion [C ] // The 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval . 2006 : 501 - 508 .
高滢 , 齐红 , 刘杰 , 等 . 结合似然关系模型和用户等级的协同过滤推荐算法 [J ] . 计算机研究与发展 , 2008 , 45 ( 9 ): 1463 - 1469 .
GAO Y , QI H , LIU J , et al . A collaborative filtering recommendation algorithm combining probabilistic relational models and user grade [J ] . Journal of Computer Research and Development , 2008 , 45 ( 9 ): 1463 - 1469 .
邓爱林 , 朱扬勇 , 施伯乐 . 基于项目评分预测的协同过滤推荐算法 [J ] . 软件学报 , 2003 , 14 ( 9 ): 1621 - 1628 .
DENG A L , ZHU Y Y , SHI B L . A collaborative filtering recommendation algorithm based on item rating prediction [J ] . Journal of Software , 2003 , 14 ( 9 ): 1621 - 1628 .
郑荔平 , 胡敏杰 , 杨红和 , 等 . 基于粗糙集的协同过滤算法研究 [J ] . 山东大学学报(理学版) , 2019 , 54 ( 2 ): 45 - 54 .
ZHENG L P , HU M J , YANG H H , et al . Research on collaborative filtering algorithm based on rough set [J ] . Journal of Shandong University (Natural Science) , 2019 , 54 ( 2 ): 45 - 54 .
张锋 , 常会友 . 使用BP 神经网络缓解协同过滤推荐算法的稀疏性问题 [J ] . 计算机研究与发展 , 2006 , 43 ( 4 ): 667 - 672 .
ZHANG F , CHANG H Y . Employing BP neural networks to alleviate the sparsity issue in collaborative filtering recommendation algorithms [J ] . Journal of Computer Research and Development , 2006 , 43 ( 4 ): 667 - 672 .
孟桓羽 , 刘真 , 王芳 , 等 . 基于图和改进 K 近邻模型的高效协同过滤推荐算法 [J ] . 计算机研究与发展 , 2017 ( 7 ): 1426 - 1438 .
MENG H Y , LIU Z , WANG F , et al . An efficient collaborative filtering algorithm based on graph model and improved KNN [J ] . Journal of Computer Research and Development , 2017 ( 7 ): 1426 - 1438 .
冷亚军 , 梁昌勇 , 丁勇 , 等 . 协同过滤中一种有效的最近邻选择方法 [J ] . 模式识别与人工智能 , 2013 , 26 ( 10 ): 968 - 974 .
LENG Y J , LIANG C Y , DING Y , et al . Method of neighborhood formation in collaborative filtering [J ] . Pattern Recognition and Artificial Intelligence , 2013 , 26 ( 10 ): 968 - 974 .
于洪 , 李俊华 . 一种解决新项目冷启动问题的推荐算法 [J ] . 软件学报 , 2015 ( 6 ): 1395 - 1408 .
YU H , LI J H . Algorithm to solve the cold-start problem in new item recommendations [J ] . Journal of Software , 2015 ( 6 ): 1395 - 1408 .
朱敬华 , 明骞 . LBSN 中融合信任与不信任关系的兴趣点推荐 [J ] . 通信学报 , 2018 , 39 ( 7 ): 161 - 169 .
ZHU J H , MING Q . POI recommendation by incorporating trust-distrust relationship in LBSN [J ] . Journal on Communications , 2018 , 39 ( 7 ): 161 - 169 .
PAWLAK Z . Rough set [J ] . International Journal of Computer and Information Sciences , 1982 , 11 : 341 - 356 .
阎红灿 , 张奉 , 刘保相 . 基于粒计算的粗决策规则抽取与约简 [J ] . 通信学报 , 2016 , 37 ( S1 ): 34 - 39 .
YAN H C , ZHANG F , LIU B X . Rough decision rules extraction and reduction based on granular computing [J ] . Journal on Communications , 2016 , 37 ( S1 ): 34 - 39 .
0
浏览量
917
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构