浏览全部资源
扫码关注微信
1. 重庆邮电大学通信与信息工程学院,重庆 400065
2. 武汉大学电子信息学院,湖北 武汉 430072
[ "张海波(1979- ),男,重庆人,博士,重庆邮电大学副教授、硕士生导师,主要研究方向为车联网、移动边缘计算等" ]
[ "王子心(1995- ),女,重庆人,重庆邮电大学硕士生,主要研究方向为车联网、移动边缘计算" ]
[ "贺晓帆(1985- ),男,河北保定人,博士,武汉大学教授,主要研究方向为无线资源优化" ]
网络出版日期:2020-01,
纸质出版日期:2020-01-25
移动端阅览
张海波, 王子心, 贺晓帆. SDN和MEC架构下V2X卸载与资源分配[J]. 通信学报, 2020,41(1):114-124.
Haibo ZHANG, Zixin WANG, Xiaofan HE. V2X offloading and resource allocation under SDN and MEC architecture[J]. Journal on communications, 2020, 41(1): 114-124.
张海波, 王子心, 贺晓帆. SDN和MEC架构下V2X卸载与资源分配[J]. 通信学报, 2020,41(1):114-124. DOI: 10.11959/j.issn.1000-436x.2020023.
Haibo ZHANG, Zixin WANG, Xiaofan HE. V2X offloading and resource allocation under SDN and MEC architecture[J]. Journal on communications, 2020, 41(1): 114-124. DOI: 10.11959/j.issn.1000-436x.2020023.
针对车到万物(V2X)场景下复杂的网络状态与海量的计算数据为车载网络带来的时延能耗增加和服务质量下降的严峻问题,构建了移动边缘计算(MEC)和软件定义网络(SDN)相结合的车载网络框架。MEC 将云服务下沉至无线网络边缘从而弥补了远程云计算所带来时延抖动,SDN控制器可从全局角度感知网络信息,灵活地调度资源,控制卸载流量。为了进一步降低系统开销,提出一种联合任务卸载与资源分配机制,对基于MEC的V2X卸载与资源分配进行建模,给出了最优卸载决策、通信和计算资源分配方案。考虑到问题的NP-hard属性,利用Agglomerative Clustering匹配初始卸载节点,并采用Q-learning进行资源分配;将卸载决策建模为完全势博弈,通过势函数构造证明纳什均衡。仿真结果表明,相比于其他机制,该机制能有效降低系统开销。
To address the serious problem of delay and energy consumption increase and service quality degradation caused by complex network status and huge amounts of computing data in the scenario of vehicle-to-everything (V2X)
a vehicular network architecture combining mobile edge computing (MEC) and software defined network (SDN) was constructed.MEC sinks cloud serviced to the edge of the wireless network to compensate for the delay fluctuation caused by remote cloud computing.The SDN controller could sense network information from a global perspective
flexibly schedule resources
and control offload traffic.To further reduce the system overhead
a joint task offloading and resource allocation scheme was proposed.By modeling the MEC-based V2X offloading and resource allocation
the optimal offloading decision
communication and computing resource allocation scheme were derived.Considering the NP-hard attribute of the problem
Agglomerative Clustering was used to select the initial offloading node
and Q-learning was used for resource allocation.The offloading decision was modeled as an exact potential game
and the existence of Nash equilibrium was proved by the potential function structure.The simulation results show that
as compared to other mechanisms
the proposed mechanism can effectively reduce the system overhead.
XU L D , HE W , LI S . Internet of things in industries:a survey [J ] . IEEE Transactions on Industrial Informatics , 2014 , 10 ( 4 ): 2233 - 2243 .
BITAM S , MELLOUK A , ZEADALLY S . VANET-cloud:a generic cloud computing model for vehicular Ad Hoc networks [J ] . IEEE Wireless Communications , 2015 , 22 ( 1 ): 96 - 102 .
YU R , HUANG X , KANG J , et al . Cooperative resource management in cloud-enabled vehicular networks [J ] . IEEE Transactions on Industrial Electronics , 2015 , 62 ( 12 ): 7938 - 7951 .
彭鑫 , 邓清勇 , 田淑娟 , 等 . 多信道车联网V2R/V2V数据传输调度算法 [J ] . 通信学报 , 2019 , 40 ( 3 ): 92 - 101 .
PENG X , DENG Q Y , TIAN S J , et al . Data dissemination scheduling algorithm for V2R/V2V in multi-channel VANET [J ] . Journal on Communications , 2019 , 40 ( 3 ): 92 - 101 .
ZHANG K , MAO Y , LENG S , et al . Delay constrained offloading for mobile edge computing in cloud-enabled vehicular networks [C ] // International Workshop on Resilient Networks Design & Modeling . IEEE , 2016 : 288 - 294 .
MUSTAFA A M , ABUBAKR O M , AHMADIEN O , et al . Mobility prediction for efficient resources management in vehicular cloud computing [C ] // International Conference on Mobile Cloud Computing . IEEE , 2017 : 53 - 59 .
田辉 , 范绍帅 , 吕昕晨 , 等 . 面向5G需求的移动边缘计算 [J ] . 北京邮电大学学报 , 2017 , 40 ( 2 ): 1 - 10 .
TIAN H , FAN S S , LYU X C , et al . Mobile edge computing for 5G demand [J ] . Journal of Beijing University of Posts and Telecommunications , 2017 , 40 ( 2 ): 1 - 10 .
MAO Y , YOU C , ZHANG J , et al . A survey on mobile edge computing:the communication perspective [J ] . IEEE Communications Surveys & Tutorials , 2017 , 19 ( 4 ): 2322 - 2358 .
MACHARDY Z , KHAN A , OBANA K , et al . V2X access technologies:regulation,research,and remaining challenges [J ] . IEEE Communications Surveys & Tutorials , 2018 , 20 ( 3 ): 1858 - 1877 .
LIU J , WAN J , ZENG B , et al . A scalable and quick-response software defined vehicular network assisted by mobile edge computing [J ] . IEEE Communications Magazine , 2017 , 55 ( 7 ): 94 - 100 .
邵雯娟 , 沈庆国 . 软件定义的D2D和V2X通信研究综述 [J ] . 通信学报 , 2019 , 40 ( 4 ): 179 - 194 .
SHAO W J , SHEN Q G . Survey of software defined D2D and V2X communication [J ] . Journal on Communications , 2019 , 40 ( 4 ): 179 - 194 .
陈兴蜀 , 滑强 , 王毅桐 , 等 . 云环境下SDN网络低速率DDoS攻击的研究 [J ] . 通信学报 , 2019 , 40 ( 6 ): 210 - 222 .
CHEN X S , HUA Q , WANG Y T , et al . Research on low-rate DDoS attack of SDN network in cloud environment [J ] . Journal on Communications , 2019 , 40 ( 6 ): 210 - 222 .
HU F , HAO Q , BAO K . A survey on software-defined network and OpenFlow:from concept to implementation [J ] . IEEE Communications Surveys & Tutorials , 2014 , 16 ( 4 ): 2181 - 2206 .
ZHANG K , MAO Y , LENG S , et al . Mobile-edge computing for vehicular networks:a promising network paradigm with predictive offloading [J ] . IEEE Vehicular Technology Magazine , 2017 , 12 ( 2 ): 36 - 44 .
LI T Z , WU M Q , ZHAO M , et al . An overhead-optimizing task scheduling strategy for ad-hoc based mobile edge computing [J ] . IEEE Access , 2017 , 5 : 5609 - 5622 .
KAN T Y , CHIANG Y , WEI H Y . Task offloading and resource allocation in mobile-edge computing system [C ] // Wireless and Optical Communications Conference . IEEE , 2018 : 1 - 4 .
YOU C , HUANG K . Multiuser resource allocation for mobile-edge computation offloading [C ] // IEEE Global Communications Conference . IEEE , 2016 : 1 - 6 .
DENG M , TIAN H , LYU X . Adaptive sequential offloading game for multi-cell mobile edge computing [C ] // International Conference on Telecommunications . IEEE , 2016 : 1 - 5 .
ZHANG H , GUO F , JI H , et al . Combinational auction based service provider selection in mobile edge computing networks [J ] . IEEE Access , 2017 , 5 : 13455 - 13464 .
ZHENG J , CAI Y , WU Y , et al . Dynamic computation offloading for mobile cloud computing:a stochastic game-theoretic approach [J ] . IEEE Transactions on Mobile Computing , 2019 , 18 ( 4 ): 771 - 786 .
MAO Y Y , ZHANG J , LETAIEF K B . Joint task offloading scheduling and transmit power allocation for mobile-edge computing systems [C ] // Wireless Communications and Networking Conference . IEEE , 2017 : 1 - 6 .
WAN J , TANG S , SHU Z , et al . Software-defined industrial Internet of things in the context of industry 4.0 [J ] . IEEE Sensors Journal , 2016 , 16 ( 20 ): 7373 - 7380 .
HUANG X , RONG Y , KANG J , et al . Exploring mobile edge computing for 5G-enabled software defined vehicular networks [J ] . IEEE Wireless Communications , 2018 , 24 ( 6 ): 55 - 63 .
HUANG C M , CHIANG M S , DAO D T , et al . V2V data offloading for cellular network based on the software defined network (SDN) inside mobile edge computing (MEC) architecture [J ] . IEEE Access , 2018 , 6 : 17741 - 17755 .
李萌 , 司鹏搏 , 孙恩昌 , 等 . 基于车联网和移动边缘计算的时延可容忍数据传输 [J ] . 北京工业大学学报 , 2018 ( 4 ): 529 - 537 .
LI M , SI P B , SUN E C , et al . Delay-tolerant data traffic based on connected vehicle network and mobile edge computing [J ] . Journal of Beijing university of technology , 2018 ( 4 ): 529 - 537 .
WANG C , YU F R , LIANG C , et al . Joint computation offloading and interference management in wireless cellular networks with mobile edge computing [J ] . IEEE Transactions on Vehicular Technology , 2017 , 66 ( 8 ): 7432 - 7445 .
YANG L , CAO J , YUAN Y , et al . A framework for partitioning and execution of data stream applications in mobile cloud computing [J ] . ACM Sigmetrics Performance Evaluation Review , 2013 , 40 ( 4 ): 23 - 32 .
LI T Z , WU M Q , ZHAO M . Consumption considered optimal scheme for task offloading in mobile edge computing [C ] // International Conference on Telecommunications . IEEE , 2016 : 1 - 6 .
GUO S T , XIAO B , YANG Y , et al . Energy-efficient dynamic offloading and resource scheduling in mobile cloud computing [J ] . IEEE Transactions on Mobile Computing , 2019 , 18 ( 2 ): 319 - 333 .
PHAM Q V , LEANH T , TRAN N H , et al . Decentralized computation offloading and resource allocation in heterogeneous networks with mobile edge computing [J ] . IEEE Access , 2018 , 6 : 75868 - 75885 .
WEN Y , ZHANG W , LUO H . Energy-optimal mobile application execution:taming resource-poor mobile devices with cloud clones [C ] // INFOCOM . IEEE , 2012 : 2716 - 2720 .
WU S , XIA W , CUI W , et al . An efficient offloading algorithm based on support vector machine for mobile edge computing in vehicular networks [C ] // International Conference on Wireless Communications and Signal Processing . IEEE , 2018 : 1 - 6 .
WANG C , YU F R , LIANG C , et al . Joint computation offloading and interference management in wireless cellular networks with mobile edge computing [J ] . IEEE Transactions on Vehicular Technology , 2017 , 66 ( 8 ): 7432 - 7445 .
LIU A A , SU Y T , NIE W Z , et al . Hierarchical clustering multi-task learning for joint human action grouping and recognition [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2017 , 39 ( 1 ): 102 - 114 .
ZHANG J , XIA W , YAN F , et al . Joint computation offloading and resource allocation optimization in heterogeneous networks with mobile edge computing [J ] . IEEE Access , 2018 ( 6 ): 19324 - 19337 .
林晓升 . 基于强化学习的缓存策略研究 [D ] . 广州:广州大学 , 2019 .
LIN X S . Research on cache strategy based on reinforcement learning [D ] . Guangzhou:Guangzhou University , 2019 .
YANG T Y , HU Y L , GURSOY M C , et al . Deep reinforcement learning based resource allocation in low latency edge computing networks [C ] // International Symposium on Wireless Communication Systems . IEEE , 2018 : 1 - 5 .
0
浏览量
1255
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构