浏览全部资源
扫码关注微信
北京邮电大学网络与交换国家重点实验室,北京 100876
[ "郭辉(1992- ),女,河北保定人,北京邮电大学博士生,主要研究方向为移动网络、边缘计算等" ]
[ "芮兰兰(1979- ),女,安徽潜山人,博士,北京邮电大学副教授、博士生导师,主要研究方向为网络管理、移动网络、边缘计算等" ]
[ "高志鹏(1980- ),男,山东滨州人,博士,北京邮电大学教授、博士生导师,主要研究方向为云计算、网络服务与管理、边缘计算等" ]
网络出版日期:2020-01,
纸质出版日期:2020-01-25
移动端阅览
郭辉, 芮兰兰, 高志鹏. 车辆边缘网络中基于多参数MDP模型的动态服务迁移策略[J]. 通信学报, 2020,41(1):1-14.
Hui GUO, Lanlan RUI, Zhipeng GAO. Dynamic service migration strategy based on MDP model with multiple parameter in vehicular edge network[J]. Journal on communications, 2020, 41(1): 1-14.
郭辉, 芮兰兰, 高志鹏. 车辆边缘网络中基于多参数MDP模型的动态服务迁移策略[J]. 通信学报, 2020,41(1):1-14. DOI: 10.11959/j.issn.1000-436x.2020012.
Hui GUO, Lanlan RUI, Zhipeng GAO. Dynamic service migration strategy based on MDP model with multiple parameter in vehicular edge network[J]. Journal on communications, 2020, 41(1): 1-14. DOI: 10.11959/j.issn.1000-436x.2020012.
为解决车辆移动及边缘服务器有限服务范围造成的服务中断问题,为车辆边缘网络提出一种基于多参数马尔可夫决策过程的动态服务迁移算法。通过构造包含时延、带宽、服务器处理能力及车辆运动信息的多参数MDP 收益函数,弥补了单纯基于距离进行服务迁移方案的不足;不再使用单一迁移目标服务器,结合车辆运动及时延限制构造候选服务器集合,基于Bellman方程表示的长期收益值进行迁移决策;利用历史数据进行权重计算及数据更新,提高了算法对动态环境的适应能力。仿真结果表明,所提算法降低了服务时延、数据分组丢失率及服务迁移次数。
To handle with the service interruption caused by vehicles’ mobility and limited service coverage of edge servers
a dynamic service migration algorithm based on multi-parameters Markov decision process (MDP) model was put forward for vehicular edge network
which was called as dynamic service migration algorithm based on multiple parameter (DSMMP).Combining delay
bandwidth
server capacity with vehicle motion information
DSMMP constructed a multi-parameters MDP revenue function to remedy the deficiency of distance-based schemes.By using vehicle motion and delay constraints
a candidate server set with several candidate servers was defined
and migration decision through long-term Bellman revenue values was made.In order to improve the dynamic adaptability of the proposed algorithm
the weight values were calculated and updated by leveraging historical information.Simulation results show that our strategy has a good performance in terms of delay
packet loss ratio and service migration times.
ABICHANDANI P , FLIGOR W , FROMM E . A cloud enabled virtual reality based pedagogical ecosystem for wind energy education [C ] // IEEE Frontiers in Education Conference . IEEE , 2014 : 1 - 7 .
KHAN A A , REHMANI M H , REISSLEIN M . Cognitive radio for smart grids:survey of architectures,spectrum sensing mechanisms,and networking protocols [J ] . IEEE Communication Survey & Tutorials , 2016 , 18 ( 1 ): 860 - 898 .
REHMANI R H , KANTARCI M E , RACHEDI A , et al . Cognitive radio based smart grid:the future of the traditional electrical grid [J ] . Ad Hoc Networks , 2016 , 41 : 1 - 4 .
REHMANI M H , KANTARCI M E , RACHEDI A , et al . Smart grids:a hub of interdisciplinary research [J ] . IEEE Access , 2015 ( 3 ): 3114 - 3118 .
施巍松 , 刘芳 , 孙辉 , 等 . 边缘计算 [M ] . 北京 : 科学出版社 , 2017 .
SHI W S , LIU F , SUN H , et al . Edge computing [M ] . Beijing : Science PressPress , 2017 .
IEEE Communication Society . Standard for adoption of open fog reference architecture for fog computing [S ] .,(2018-08-01)[2019-09-30 ] . IEEE Standard ,(2018-08-01)[2019-09-30 ] .
SHI W S , CAO J , ZHANG Q , et al . Edge computing:vision and challenges [J ] . IEEE Internet of Things Journal , 2016 , 3 ( 5 ): 637 - 646 .
Cisco . Cisco visual networking index:global mobile data traffic forecast update,2016-2021 [R ] .[2019-09-30 ] .
ABBAS N , ZHANG Y , TAHERKORDI A , et al . Mobile edge computing:a survey [J ] . IEEE Internet of Things Journal , 2018 , 5 ( 1 ): 450 - 465 .
WANG S , ZHANG X , ZHANG Y , et al . A survey on mobile edge networks:convergence of computing,caching and communications [J ] . IEEE Access , 2017 ( 5 ): 6757 - 6779 .
EJAZ A , HUSAIN R M . Mobile edge computing:opportunities,solutions,and challenges [J ] . Future Generation Computer Systems , 2017 , 70 : 59 - 63 .
LI H X , SHOU G C , HU Y H , et al . Mobile edge computing:progress and challenges [C ] // 2016 4th IEEE International Conference on Mobile Cloud Computing,Services,and Engineering . IEEE , 2016 : 83 - 84 .
PATEL M , HU Y C , HEDE P , et al . Mobile-edge computing Introductory technical white paper [R ] . Mobile-Edge Computing (MEC) Industry Initiative ,(2014-09)[2019-09-30 ]
俞一帆 , 任春明 , 陈思仁 . 5G移动边缘计算 [M ] . 北京 : 人民邮电出版社 , 2017 .
YU Y F , REN C M , CHEN S R . 5G mobile edge computing [M ] . Beijing : Posts and Telecom PressPress , 2017 .
ETSI MEC . MEC in an enterprise setting:a solution outline [R ] .(2018-09)[2019-09-30 ] .
WANG S G , XU J L , ZHANG N , et al . A survey on service migration in mobile edge computing [J ] . IEEE Access , 2018 ( 6 ): 23511 - 23528 .
TALEB T , KSENTINI A , FRANGOUDIS P . Follow-me cloud:when cloud services follow mobile users [J ] . IEEE Transactions on Cloud Computing , 2018 , 7 ( 2 ): 369 - 382 .
TALEB T , KSENTINI A . An analytical model for follow me cloud [C ] // 2013 IEEE Global Communications Conference . IEEE , 2013 : 1291 - 1296 .
WANG S Q , URGAONKAR R , HE T , et al . Mobility-induced service migration in mobile micro-clouds [C ] // 2014 IEEE Military Communications Conference . IEEE , 2014 : 835 - 840 .
SHARMA R , KUMAR S , TRIVEDI M C . Mobile cloud computing:a needed shift from cloud to mobile cloud [C ] // 2013 5th International Conference and Computational Intelligence and Communication Networks . 2013 : 533 - 539 .
WANG S Q , URGAONKAR R , ZAFER M , et al . Dynamic service migration in mobile edge-clouds [C ] // 2015 IFIP Networking Conference . IFIP , 2015 : 1 - 9 .
URGAONKAR R , WANG S Q , HE T , et al . Dynamic service migration and workload scheduling in edge-clouds [C ] // 33rd International Symposium on Computer Performance,Modeling,Measurements,and Evaluation / IFIP WG 7.3 Performance . IFIP , 2015 : 205 - 228 .
NEELY M J . Stochastic network optimization with application to communication and queueing systems [M ] . Sam Rafael : Morgan and Claypool PublishersPress , 2010 .
ZHANG W Y , HU Y , ZHANG Y Y , et al . SEGUE:quality of service aware edge cloud service migration [C ] // 2016 IEEE International Conference on Cloud Computing Technology and Science . IEEE , 2016 : 344 - 351 .
FEI Z M , BHATTACHARJEE S , ZEGURA E W , et al . A novel server selection technique for improving the response time of a replicated service [C ] // INFOCOM’98.Seventeenth Annual Joint Conference of the IEEE Computer and Communications Societies . IEEE , 1998 : 783 - 791 .
ZHAO D , YANG T , JIN Y H , et al . A service migration strategy based on multiple attribute decision in mobile edge computing [C ] // 2017 IEEE 17th International Conference on Communication Technology . IEEE , 2017 : 986 - 990 .
GAO Z G , CHEN D J , CAI S B , et al . OptDynLim:an optimal algorithm for the one-dimensional RSU deployment problem with non- uniform profit density [J ] . IEEE Transactions on Industrial Informatics , 2019 , 15 ( 2 ): 1052 - 1061 .
GAO Z G , CHEN D J , CAI S B , et al . Optimal and greedy algorithms for the one-dimensional RSU deployment problem with new model [J ] . IEEE Transactions on Vehicular Technology , 2018 , 67 ( 8 ): 7643 - 7657 .
RAYCHAUDHURI D , SESKAR I , OTT M , et al . Overview of the ORBIT radio grid testbed for evaluation of next-generation wireless network protocols [C ] // IEEE Wireless Communications and Networking Conference . IEEE , 2005 : 1664 - 1669 .
PIORKOWSKI M , SARAFIJANOVIC D N , GROSSGLAUSER M . CRAWDAD dataset epfl/mobility [R ] .(2009-02-24)[2019-09-30 ] .
0
浏览量
833
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构