浏览全部资源
扫码关注微信
苏州大学苏州市先进光通信网络技术重点实验室,江苏 苏州 215006
[ "沈纲祥(1975- ),男,浙江绍兴人,博士,苏州大学特聘教授,主要研究方向为光通信网络技术" ]
网络出版日期:2020-01,
纸质出版日期:2020-01-25
移动端阅览
沈纲祥. 基于人工智能技术的光通信网络应用研究[J]. 通信学报, 2020,41(1):162-168.
Gangxiang SHEN. Application research of optical communication network based on artificial intelligence technique[J]. Journal on communications, 2020, 41(1): 162-168.
沈纲祥. 基于人工智能技术的光通信网络应用研究[J]. 通信学报, 2020,41(1):162-168. DOI: 10.11959/j.issn.1000-436x.2020004.
Gangxiang SHEN. Application research of optical communication network based on artificial intelligence technique[J]. Journal on communications, 2020, 41(1): 162-168. DOI: 10.11959/j.issn.1000-436x.2020004.
针对人工智能(AI)技术在光通信网络中的应用进行探讨。主要介绍了 AI 技术代表性应用和光通信网络开放性导致的 AI 技术失效的潜在风险,并针对这些风险提出了一些应对策略,主要包括通过单元化小型化的AI系统建模,与传统经典网络建模和规划方法相结合,提高AI技术的有效性和可解释性。同时,针对AI技术可能失效和遭受攻击提出了基于网络保护的应对策略。
The applications of artificial intelligence (AI) technique in optical communication networks were explored.Some representative AI applications and potential risks due to the failure of the AI technique were discussed.To address these risks
methods including systematic AI modeling through unitizing and miniaturizing sub-systems and cooperation with traditional network modeling and planning methods were proposed
which were expected to help improve the effectiveness and practicality of the application of the AI technique.Finally
to recover a system from the failure of its employed AI technique or attacks
some protection strategies were proposed.
MATA J , MUGUEL I , DURAN R J , et al . Artificial intelligence (AI) methods in optical networks:a comprehensive survey [J ] . Optical Switching and Networking , 2018 , 28 ( 4 ): 43 - 57 .
MUSUMECI F , ROTTONDI C , NAG A , et al . An overview on application of machine learning techniques in optical networks [J ] . IEEE Communications Surveys & Tutorials , 2019 , 21 ( 2 ): 1383 - 1408 .
ZHANG J , CHEN W , GAO M , et al . Intelligent adaptive coherent optical receiver based on convolutional neural network and clustering algorithm [J ] . Optics Express , 2018 , 26 ( 14 ): 18684 - 18698 .
THRANE J , WASS J , PIELS M , et al . Machine learning techniques for optical performance monitoring from directly detected PDM-QAM signals [J ] . IEEE/OSA Journal of Lightwave Technology , 2017 , 35 ( 4 ): 868 - 875 .
KHAN F N , ZHONG K,AL-ARASHI W H , et al . Modulation format identification in coherent receivers using deep machine learning [J ] . IEEE Photonics Technology Letters , 2016 , 28 ( 17 ): 1886 - 1889 .
ROTTONDI C , BARLETTA L , GIUSTI A , et al . Machine-learning method for quality of transmission prediction of unestablished lightpaths [J ] . IEEE/OSA Journal of Optical Communications and Networking , 2018 , 10 ( 2 ): A286 - A297 .
MORAIS R M , PEDRO J . Machine learning models for estimating quality of transmission in DWDM networks [J ] . IEEE/OSA Journal of Optical Communications and Networking , 2018 , 10 ( 10 ): D84 - D99 .
SAMADI P , AMAR D , LEPERS C , et al . Quality of transmission prediction with machine learning for dynamic operation of optical WDM networks [C ] // 2017 European Conference on Optical Communication . IEEE/OSA , 2017 : 1 - 3 .
SHAHKARAMI S , MUSUMECI F , CUGINI F , et al . Machine-learning-based soft-failure detection and identification in optical networks [C ] // 2018 Optical Fiber Communications Conference and Exposition . IEEE/OSA , 2018 : 1 - 3 .
VELASCO L , SHARIATI B , VELA A P , et al . Learning from the optical spectrum:soft-failure identification and localization [C ] // 2018 Optical Fiber Communications Conference and Exposition . IEEE/OSA , 2018 : 1 - 3 .
PESIC J , LE ROUZIC E , BROCHIER N , et al . Proactive restoration of optical links based on the classification of events [C ] // 15th International Conference on Optical Network Design and Modeling . IEEE/OSA , 2011 : 1 - 6 .
NATALINO C , SCHIANO M , DI GIGLIO A , et al . Field demonstra tion of machine-learning-aided detection and identification of jamming attacks in optical networks [C ] // 2018 European Conference on Optical Communication . IEEE/OSA , 2018 : 1 - 3 .
LI Y , HUA N , YU Y , et al . Light source and trail recognition via optical spectrum feature analysis for optical network security [J ] . IEEE Communications Letters , 2018 , 22 ( 5 ): 982 - 985 .
POINTURIER Y . Design of low-margin optical networks [J ] . IEEE/OSA Journal of Optical Communications and Networking , 2017 , 9 ( 1 ): A9 - A17 .
CABALLERO F J V , et al . Machine learning based linear and nonlinear noise estimation [J ] . IEEE/OSA Journal of Optical Communications and Networking , 2018 , 10 ( 10 ): D42 - D51 .
ZHU S , GUTTERMAN C L , MO W , et al . Machine learning based prediction of erbium-doped fiber WDM line amplifier gain spectra [C ] // 2018 European Conference on Optical Communication . IEEE/OSA , 2018 : 1 - 3 .
HUANG Y , et al . Dynamic mitigation of EDFA power excursions with machine learning [J ] . Optics Express , 2017 , 25 ( 3 ): 2245 - 2258 .
MO W , GUTTERMAN C L , LI Y , et al . Deep-neural-network-based wavelength selection and switching in ROADM systems [J ] . IEEE/OSA Journal of Optical Communications and Networking , 2018 , 10 ( 10 ): D1 - D11 .
JOHANNISSON P , AGRELL E . Modeling of nonlinear signal distortion in fiber-optic networks [J ] . IEEE/OSA Journal of Lightwave Technology , 2014 , 32 ( 23 ): 4544 - 4552 .
WANG X , SHEN G , ZHU Z , et al . Benefits of sub-band virtual concatenation for enhancing availability of elastic optical networks [J ] . IEEE/OSA Journal of Lightwave Technology , 2016 , 34 ( 4 ): 1098 - 1110 .
SHEN G , GUO H , BOSE S K . Survivable elastic optical networks:survey and perspective (invited) [J ] . Photonic Network Communications , 2016 , 31 ( 1 ): 71 - 87 .
0
浏览量
736
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构