浏览全部资源
扫码关注微信
1. 汕头大学计算机科学与技术系,广东 汕头 515063
2. 汕头大学智能制造技术教育部重点实验室,广东 汕头 515063
[ "熊智(1978- ),男,湖北黄冈人,博士,汕头大学副教授,主要研究方向为服务器集群、大数据应用、机器学习" ]
[ "徐恺(1992- ),男,河南信阳人,汕头大学硕士生,主要研究方向为推荐算法、机器学习、大数据应用" ]
[ "蔡玲如(1979- ),女,广东汕头人,博士,汕头大学副教授,主要研究方向为系统建模与仿真、大数据应用、博弈论" ]
[ "蔡伟鸿(1963- ),男,广东潮州人,博士,汕头大学教授,主要研究方向为云计算、信息安全、网络通信" ]
网络出版日期:2019-12,
纸质出版日期:2019-12-25
移动端阅览
熊智, 徐恺, 蔡玲如, 等. 基于张量填补和用户偏好的联合推荐算法[J]. 通信学报, 2019,40(12):155-166.
Zhi XIONG, Kai XU, Lingru CAI, et al. Joint recommendation algorithm based on tensor completion and user preference[J]. Journal on communications, 2019, 40(12): 155-166.
熊智, 徐恺, 蔡玲如, 等. 基于张量填补和用户偏好的联合推荐算法[J]. 通信学报, 2019,40(12):155-166. DOI: 10.11959/j.issn.1000-436x.2019231.
Zhi XIONG, Kai XU, Lingru CAI, et al. Joint recommendation algorithm based on tensor completion and user preference[J]. Journal on communications, 2019, 40(12): 155-166. DOI: 10.11959/j.issn.1000-436x.2019231.
针对现有推荐算法缺乏对用户偏好的考虑,推荐效果不理想的问题,提出了一种联合张量填补和用户偏好的推荐算法。首先,基于评分矩阵和项目所属类别矩阵构建用户–项目–类别的三维张量;然后,利用Frank-Wolfe算法进行迭代计算,填补缺失数据,同时基于张量数据构建用户类别偏好矩阵和评分偏好矩阵;最后,基于填补后的张量以及2个偏好矩阵设计联合推荐算法,并采用差分进化算法进行参数调优。实验结果表明,与一些常用算法和新近提出的算法相比,所提算法的推荐效果优于对比算法,其精度平均提升了1.96%~3.44%,召回率平均提升了1.35%~2.40%。
Aiming at the problem that existing recommendation algorithms have little regard for user preference
and the recommendation result is not satisfactory
a joint recommendation algorithm based on tensor completion and user preference was proposed.First
a user-item-category 3-dimensional tensor was built based on user-item scoring matrix and item-category matrix.Then
the Frank-Wolfe algorithm was used for iterative calculation to fill in the missing data of the tensor.At the same time
a user category preference matrix and a scoring preference matrix were built based on the 3-dimensional tensor.Finally
a joint recommendation algorithm was designed based on the completed tensor and the two preference matrices
and the differential evolution algorithm was used for parameter tuning.The experimental results show that compared with some typical and newly proposed recommendation algorithms
the proposed algorithm is superior to the compare algorithms
the precision is improved by 1.96% ~ 3.44% on average
and the recall rate is improved by 1.35%~2.40% on average.
JUGOVAC M , JANNACH D . Interacting with recommenders—overview and research directions [J ] . ACM Transactions on Interactive Intelligent Systems , 2017 , 7 ( 3 ): 1 - 46 .
SHAH K , SALUNKE A , DONGARE S , et al . Recommender systems:an overview of different approaches to recommendations [C ] // The 4th International Conference on Innovations in Information,Embedded and Communication Systems . IEEE , 2017 .
FORMOSO V , FERNÁNDEZ D , CACHEDA F , et al . Distributed architecture for k-nearest neighbors recommender systems [J ] . World Wide Web , 2015 , 18 ( 4 ): 997 - 1017 .
PONNAM L T , PUNYASAMUDRAM S D , NALLAGULLA S N , et al . Movie recommender system using item based collaborative filtering technique [C ] // International Conference on Emerging Trends in Engineering,Technology and Science . IEEE , 2016 .
吴毅涛 , 张兴明 , 王兴茂 , 等 . 基于用户模糊相似度的协同过滤算法 [J ] . 通信学报 , 2016 , 37 ( 1 ): 198 - 206 .
WU Y T , ZHANG X M , WANG X M , et al . User fuzzy similari-ty-based collaborative filtering recommendation algorithm [J ] . Journal on Communications , 2016 , 37 ( 1 ): 198 - 206 .
KOREN Y , . Factorization meets the neighborhood:A multifaceted collaborative filtering model [C ] // The 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . ACM , 2008 : 426 - 434 .
吴宾 , 娄铮铮 , 叶阳东 . 联合正则化的矩阵分解推荐算法 [J ] . 软件学报 , 2018 , 29 ( 9 ): 2681 - 2696 .
WU B , LOU Z Z , YE Y D . Co-regularized matrix factorization rec-ommendation algorithm [J ] . Journal of Software , 2018 , 29 ( 9 ): 2681 - 2696 .
WANG Q , MAO Z , WANG B , et al . Knowledge graph embedding:a survey of approaches and applications [J ] . IEEE Transactions on Knowledge and Data Engineering , 2017 , 29 ( 12 ): 2724 - 2743 .
黄美灵 . Spark MLlib机器学习:算法、源码及实战详解 [M ] . 北京 : 电子工业出版社 , 2016 .
HUANG M L . Spark MLlib machine learning:algorithm,source code and detailed practice [M ] . Beijing : Publishing House of Electronics IndustryPress , 2016 .
TAY Y , TUAN L A , HUI S C . Latent relational metric learning via memory-based attention for collaborative ranking [C ] // The 27th International World Wide Web Conference . 2018 : 729 - 739 .
ZHANG S , YAO L , SUN A , et al . DeepRec:an open-source toolkit for deep learning based recommendation [J ] . ACM Computing Surveys , 2019 , 52 ( 1 ): 1 - 38 .
KUMAR V , PUJARI A K , SAHU S K , et al . Collaborative filtering using multiple binary maximum margin matrix factorizations [J ] . Information Sciences , 2017 , 380 ( C ): 1 - 11 .
XU Y , HAO R , YIN W , et al . Parallel matrix factorization for low-rank tensor completion [J ] . Inverse Problems and Imaging , 2015 , 9 ( 2 ): 601 - 624 .
YU W , ZHANG H , HE X , et al . Aesthetic-based clothing recommendation [C ] // The 27th International World Wide Web Conference . 2018 : 649 - 658 .
CAI Y , ZHANG M , LUO D , et al . Low-order tensor decompositions for social tagging recommendation [C ] // The Forth ACM International Conference on Web Search and Web Data Mining . ACM , 2011 : 695 - 704 .
KOLDA T G , BADER B W . Tensor decompositions and applications [J ] . Siam Review , 2009 , 51 ( 3 ): 455 - 500 .
NANOPOULOS A , RAFAILIDIS D , SYMEONIDIS P , et al . MusicBox:personalized music recommendation based on cubic analysis of social tags [J ] . IEEE Transactions on Audio,Speech,and Language Processing , 2010 , 18 ( 2 ): 407 - 412 .
SYMEONIDIS P . ClustHOSVD:Item recommendation by combining semantically enhanced tag clustering with tensor HOSVD [J ] . IEEE Transactions on Systems,Man,and Cybernetics:Systems , 2016 , 46 ( 9 ): 1240 - 1251 .
JAIN P , OH S . Provable tensor factorization with missing data [C ] // International Conference on Neural Information Processing Systems . NIPS , 2014 : 1431 - 1439 .
KASAI H , MISHRA B . Low-rank tensor completion:a riemannian manifold preconditioning approach [C ] // The 33rd International Conference on Machine Learning . 2016 : 1012 - 1021 .
LIU W , WU C , FENG B , et al . Conditional preference in recommender systems [J ] . Expert Systems with Applications , 2015 , 42 ( 2 ): 774 - 788 .
HARPER F M , KONSTAN J A . The movielens datasets:history and context [J ] . ACM Transactions on Interactive Intelligent Systems , 2015 , 5 ( 4 ): 1 - 19 .
JAGGI M , . Revisiting frank-wolfe:projection-free sparse convex optimization [C ] // The 30th International Conference on Machine Learning . IMLS , 2013 : 427 - 435 .
LIU J , MUSIALSKI P , WONKA P , et al . Tensor completion for estimating missing values in visual data [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2013 , 35 ( 1 ): 208 - 220 .
WIMALAWARNE K , SUGIYAMA M , TOMIOKA R . Multitask learning meets tensor factorization:task imputation via convex optimization [C ] // International Conference on Neural Information Processing Systems . NIPS , 2014 : 2825 - 2833 .
GUO X , YAO Q , KWOK J T . Efficient sparse low-rank tensor completion using the Frank-Wolfe algorithm [C ] // The 31th AAAI Conference on Artificial Intelligence . 2017 : 1948 - 1954 .
PRIC K , STORN R M , LAMPINEN J A . Differential evolution:a practical approach to global optimization [M ] . Berlin : SpringerPress , 2005 .
0
浏览量
1329
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构