浏览全部资源
扫码关注微信
国家数字交换系统工程技术研究中心,河南 郑州 450001
[ "兰巨龙(1962- ),男,河北张家口人,博士,国家数字交换系统工程技术研究中心教授、博士生导师,主要研究方向为未来信息通信网络关键理论与技术" ]
[ "张学帅(1994- ),男,山东菏泽人,国家数字交换系统工程技术研究中心硕士生,主要研究方向为软件定义网络" ]
[ "胡宇翔(1982- ),男,河南周口人,博士,国家数字交换系统工程技术研究中心副教授、博士生导师,主要研究方向为未来网络关键技术、网络智慧化等" ]
[ "孙鹏浩(1992- ),男,山东青岛人,国家数字交换系统工程技术研究中心博士生,主要研究方向为软件定义网络、流量工程等" ]
网络出版日期:2019-12,
纸质出版日期:2019-12-25
移动端阅览
兰巨龙, 张学帅, 胡宇翔, 等. 基于深度强化学习的软件定义网络QoS优化[J]. 通信学报, 2019,40(12):60-67.
Julong LAN, Xueshuai ZHANG, Yuxiang HU, et al. Software-defined networking QoS optimization based on deep reinforcement learning[J]. Journal on communications, 2019, 40(12): 60-67.
兰巨龙, 张学帅, 胡宇翔, 等. 基于深度强化学习的软件定义网络QoS优化[J]. 通信学报, 2019,40(12):60-67. DOI: 10.11959/j.issn.1000-436x.2019227.
Julong LAN, Xueshuai ZHANG, Yuxiang HU, et al. Software-defined networking QoS optimization based on deep reinforcement learning[J]. Journal on communications, 2019, 40(12): 60-67. DOI: 10.11959/j.issn.1000-436x.2019227.
为解决软件定义网络场景中,当前主流的基于启发式算法的QoS优化方案常因参数与网络场景不匹配出现性能下降的问题,提出了基于深度强化学习的软件定义网络QoS优化算法。首先将网络资源和状态信息统一到网络模型中,然后通过长短期记忆网络提升算法的流量感知能力,最后基于深度强化学习生成满足QoS目标的动态流量调度策略。实验结果表明,相对于现有算法,所提算法不但保证了端到端传输时延和分组丢失率,而且提高了22.7%的网络负载均衡程度,增加了8.2%的网络吞吐率。
To solve the problem that the QoS optimization schemes which based on heuristic algorithm degraded often due to the mismatch between parameters and network characteristics in software-defined networking scenarios
a software-defined networking QoS optimization algorithm based on deep reinforcement learning was proposed.Firstly
the network resources and state information were integrated into the network model
and then the flow perception capability was improved by the long short-term memory
and finally the dynamic flow scheduling strategy
which satisfied the specific QoS objectives
were generated in combination with deep reinforcement learning.The experimental results show that
compared with the existing algorithms
the proposed algorithm not only ensures the end-to-end delay and packet loss rate
but also improves the network load balancing by 22.7% and increases the throughput by 8.2%.
MCKEOWN N . Software-defined networking [J ] . INFOCOM Keynote Talk , 2009 , 17 ( 2 ): 30 - 32 .
张朝昆 , 崔勇 , 唐翯祎 , 等 . 软件定义网络(SDN)研究进展 [J ] . 软件学报 , 2015 , 26 ( 1 ): 62 - 81 .
ZHANG C K , CUI Y , TANG H Y , et al . State-of-the-art survey on software-defined-networking (SDN) [J ] . Journal of Software , 2015 , 26 ( 1 ): 62 - 81 .
董谦 , 李俊 , 马宇翔 , 等 . 软件定义网络中基于分段路由的流量调度方法 [J ] . 通信学报 , 2018 , 39 ( 11 ): 23 - 35 .
DONG Q , LI J , MA Y X , et al . Traffic scheduling method based on segment routing in software-defined networking [J ] . Journal on Com-munications , 2018 , 39 ( 11 ): 23 - 35 .
HARTMAN T , HASSIDIM A , KAPLAN H , et al . How to split a flow? [C ] // 2012 Proceedings IEEE INFOCOM . IEEE , 2012 : 828 - 836 .
ZHANG S R , . Valiant load-balancing:building networks that can support all traffic matrices [M ] // London:Algorithms for Next Generation Networks . Springer , 2010 : 19 - 30 .
SUTTON R S , BARTO A G . Reinforcement learning:an introduction [M ] . MIT Press , 2018 .
LECUN Y , BENGIO Y , HINTON G . Deep learning [J ] . Nature , 2015 , 521 ( 7553 ):436.
MAO H , NETRAVALI R , ALIZADEH M . Neural adaptive video streaming with pensieve [C ] // The Conference of the ACM Special Interest Group on Data Communication . ACM , 2017 : 197 - 210 .
XIAO S , HE D , GONG Z . Deep-q:traffic-driven QoS inference using deep generative network [C ] // The 2018 Workshop on Network Meets AI & ML . ACM , 2018 : 67 - 73 .
CHEN L , CHEN K , BAI W , et al . Scheduling mix-flows in commodity datacenters with karuna [C ] // The 2016 ACM SIGCOMM Conference . ACM , 2016 : 174 - 187 .
ONGARO F , CERQUEIRA E , FOSCHINI L , et al . Enhancing the quality level support for real-time multimedia applications in software-defined networks [C ] // 2015 International Conference on Computing,Networking and Communications (ICNC) . IEEE , 2015 : 505 - 509 .
ALIZADEH M , EDSALL T , DHARMAPURIKAR S , et al . CONGA:distributed congestion-aware load balancing for datacenters [J ] . ACM SIGCOMM Computer Communication Review , 2014 , 44 ( 4 ): 503 - 514 .
XU Z , TANG J , MENG J , et al . Experience-driven networking:a deep reinforcement learning based approach [C ] // IEEE INFOCOM 2018 IEEE Conference on Computer Communications . IEEE , 2018 : 1871 - 1879 .
XU Z , TANG J , YIN C , et al . Experience-driven congestion control:when multi-path TCP meets deep reinforcement learning [J ] . IEEE Journal on Selected Areas in Communications , 2019 , 37 ( 6 ): 1325 - 1336 .
MCKEOWN N , ANDERSON T , BALAKRISHNAN H , et al . OpenFlow:enabling innovation in campus networks [J ] . ACM SIGCOMM Computer Communication Review , 2008 , 38 ( 2 ): 69 - 74 .
BOSSHART P , DALY D , GIBB G , et al . P4:programming protocol-independent packet processors [J ] . ACM SIGCOMM Computer Communication Review , 2014 , 44 ( 3 ): 87 - 95 .
ZHOU W , LI L , LUO M , et al . REST API design patterns for SDN northbound API [C ] // 2014 28th International Conference on Advanced Information Networking and Applications Workshops . IEEE , 2014 : 358 - 365 .
CLEMM A , CHANDRAMOULI M , KRISHNAMURTHY S . DNA:an SDN framework for distributed network analytics [C ] // 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM) . IEEE , 2015 : 9 - 17 .
LILLICRAP T P , HUNT J J , PRITZEL A , et al . Continuous control with deep reinforcement learning [C ] // Eighth International Conference on Learning Representations . ICLR , 2016 : 187 - 200 .
RÄCKE H , . Optimal hierarchical decompositions for congestion minimization in networks [C ] // The Fortieth Annual ACM Symposium on Theory of Computing . ACM , 2008 : 255 - 264 .
0
浏览量
1498
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构