浏览全部资源
扫码关注微信
1. 重庆邮电大学通信与信息工程学院,重庆 400065
2. 重庆邮电大学移动通信关键技术重庆市重点实验室,重庆 400065
3. 重庆工商大学环境与资源学院,重庆 400067
[ "聂益芳(1990- ),女,重庆人,重庆邮电大学博士生,主要研究方向为无线网络安全、网络态势感知、无线传输理论与技术。" ]
[ "李方伟(1960- ),男,重庆人,博士,重庆邮电大学教授、博士生导师,主要研究方向为电磁场与电磁波、无线网络安全、无线传输理论与技术。" ]
网络出版日期:2019-10,
纸质出版日期:2019-10-25
移动端阅览
聂益芳, 李方伟. 基于频率正交时间反演的空间聚焦虚拟覆盖方法研究[J]. 通信学报, 2019,40(10):30-41.
Yifang NIE, Fangwei LI. Research on space focusing virtual coverage based on orthogonal frequency time reversal method[J]. Journal on communications, 2019, 40(10): 30-41.
聂益芳, 李方伟. 基于频率正交时间反演的空间聚焦虚拟覆盖方法研究[J]. 通信学报, 2019,40(10):30-41. DOI: 10.11959/j.issn.1000-436x.2019211.
Yifang NIE, Fangwei LI. Research on space focusing virtual coverage based on orthogonal frequency time reversal method[J]. Journal on communications, 2019, 40(10): 30-41. DOI: 10.11959/j.issn.1000-436x.2019211.
针对超密集无线网中的信息泄露和传输覆盖效率问题,提出了基于频率正交时间反演的虚拟覆盖方法。首先,以正交子载波区分各信道,降低相关度;其次,进行时间反演,让各目标信号在目的用户附近空间聚焦;然后,研究推导出覆盖范围与信号干扰噪声比理论表达式并进行论证;最后,在确保用户覆盖需求的基础上,无关用户的覆盖范围缩小,形成了虚拟覆盖。仿真表明,在不增加功率和天线情况下,虚拟覆盖增加了接收信号难度,提升了可靠传输的安全速率和系统容量。
To solve the problem of information leakage and coverage efficiency in ultra-dense wireless network
the orthogonal frequency-time reversal virtual coverage scheme was proposed.At first
different wireless reversal channels with lower correlation were distinguished by orthogonal carries.Next
after time reversal
the space focusing of each target signal was realized around the terminal.Then
theoretical expressions of the signal coverage and the signal-interference-to-noise ratio were derived and proved.Ultimately
the virtual coverage was shaped
meeting the requirements of users.The coverage of unrelated user not belonging to system was reduced.The results show that those unrelated users are difficult to receive the target signal because of virtual coverage.In addition
the system has higher capacity and security rate of reliable transmission without any more power or antennas.
CHEM J X , LIN W Q , YAN P P , et al . Design of mm-wave transmitter and receiver for 5G [C ] // 10th Global Symposium on Millimeter-Waves . IEEE , 2017 : 92 - 32 .
GAO M J , LI J , JAYAKODY D N , et al . A super base station architecture for future ultra-dense cellular networks:toward low latency and high energy efficiency [J ] . IEEE Communications Magazine , 2018 , 56 ( 6 ): 35 - 41 .
LI X , TAFLOVE A , BACKMAN V . Modified FDTD near-to-far-field transformation for improved backscattering calculation of strongly forward-scattering objects [J ] . IEEE Antennas and Wireless Propagation Letters , 2005 ( 4 ): 35 - 38 .
GUPTA K K , SHUKLA S . Internet of things:security challenges for next generation networks [C ] // International Conference on Innovation and Challenges in Cyber Security . IEEE , 2016 : 315 - 318 .
WU D P , SI S S , WU S E , et al . Dynamic trust relationships aware data privacy protection in mobile crowd-sensing [J ] . IEEE Internet of Things Journal , 2018 , 5 ( 4 ): 2958 - 2970 .
XU Q , REN P Y , DU Q H , et al . Security-aware waveform and artificial noise design for time-reversal based transmission [J ] . IEEE Transactions on Vehicular Technology , 2018 , 67 ( 6 ): 5486 - 5490 .
SIVAKRISHNA S , YARRABOTHU R S . Design and simulation of 5G massive MIMO kernel algorithm on SIMD vector processor [C ] // Signal Processing and Communication Engineering Systems . IEEE , 2018 : 53 - 57 .
LEROSEY G , ROSNY J D , TOURIN A , et al . Focusing beyond the diffraction limit with far-field time reversal [J ] . Science , 2007 ( 315 ): 1120 - 1122 .
CANDY V J , CHAMBERS H D , GUIDRY B L , et al . Muti-channel time-reversal receivers for multi and implementations:7463690 [P ] .2008 -12-09.
张冉 . 时间反演超分辨率聚焦的建模和实现研究 [D ] . 成都:电子科技大学 , 2017 .
ZHANG R . Study on modeling and implementation of time reversal super-resolution focusing [D ] . Chengdu:University of Electronic Science and Technology of China , 2017 .
CHEN Y , HAN F , YANG Y H , et al . Time-reversal wireless paradigm for green internet of things:an overview [J ] . IEEE Internet of Things Journal , 2014 , 1 ( 1 ): 81 - 98 .
CHEN Z X , ZHAO Y F , ZHAO D S . Multipath effects on time reversal OFDM communications between wireless sensors [C ] // 11th International Symposium on Antennas,Propagation and EM Theory . IEEE , 2016 : 376 - 379 .
DEZFOOLIYAN A , WEINER A M . Spatiotemporal focusing of phase compensation and time reversal in ultra wideband systems with limited rate feedback [J ] . IEEE transactions on Vehicular Technology , 2016 , 65 ( 4 ): 1998 - 2006 .
KIDA Y , DEGUCHI M , SHIMURA T . The effects of interferences on time reversal MIMO:an evaluation of multipath and co-channel interference [C ] // IEEE Kobe Techno-Oceans . IEEE , 2018 : 1 - 5 .
YANG Y H , LIU K J R . Waveform design with interference pre-cancellation beyond time-reversal systems [J ] . IEEE Transactions on Wireless Communications , 2016 , 15 ( 5 ): 3643 - 3654 .
SMIMOV N I , EREMICHEV V I , SYRENVOA L A . Increase in the efficiency of the coverage area in the cellular communication systems [C ] // Systems of Signal Synchronization,Generating and Processing in Telecommunications . IEEE , 2017 : 1 - 4 .
CHEN Y , WANG B B , HAN Y , et al . Why time reversal for future 5G wireless? [J ] . IEEE Signal Processing Magazine , 2016 , 33 ( 2 ): 17 - 26 .
PROAKIS J G , SALEHI M . Digital communications [M ] . 5th ed . New York : McGraw-Hill Higher Education PressPress , 2008 : 885 - 890 .
HAN F , YANG Y H , WANG B B , et al . Time-reversal division multiple access over multi-path channels [J ] . IEEE Transactions on Communications , 2012 , 60 ( 7 ): 1953 - 1965 .
0
浏览量
309
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构