浏览全部资源
扫码关注微信
1. 哈尔滨工业大学计算机网络与信息安全技术研究中心,黑龙江 哈尔滨 150001
2. 广州大学网络空间先进技术研究院,广东 广州 510006
[ "王晓萌(1987- ),男,黑龙江哈尔滨人,哈尔滨工业大学博士生,主要研究方向为在线社交网络、信息传播预测、舆情安全等。" ]
[ "方滨兴(1960- ),男,江西万年人,中国工程院院士,哈尔滨工业大学教授、博士生导师,主要研究方向为计算机网络与信息安全理论与技术、并行计算等。" ]
[ "张宏莉(1973- ),女,吉林榆树人,博士,哈尔滨工业大学教授、博士生导师,主要研究方向为网络与信息安全、网络测量与建模、网络计算、并行处理等。" ]
[ "王星(1981- ),男,重庆人,博士,哈尔滨工业大学助理研究员,主要研究方向为网络与信息安全、网络舆情监控、知识迁移。" ]
网络出版日期:2019-10,
纸质出版日期:2019-10-25
移动端阅览
王晓萌, 方滨兴, 张宏莉, 等. TSL:基于连接强度的Facebook消息流行度预测模型[J]. 通信学报, 2019,40(10):1-9.
Xiaomeng WANG, Binxing FANG, Hongli ZHANG, et al. TSL:predicting popularity of Facebook content based on tie strength[J]. Journal on communications, 2019, 40(10): 1-9.
王晓萌, 方滨兴, 张宏莉, 等. TSL:基于连接强度的Facebook消息流行度预测模型[J]. 通信学报, 2019,40(10):1-9. DOI: 10.11959/j.issn.1000-436x.2019207.
Xiaomeng WANG, Binxing FANG, Hongli ZHANG, et al. TSL:predicting popularity of Facebook content based on tie strength[J]. Journal on communications, 2019, 40(10): 1-9. DOI: 10.11959/j.issn.1000-436x.2019207.
在线社交网络的迅速发展使信息呈现爆炸式增长,然而不同消息的流行度存在较大差异,对其准确预测一直是领域内的研究难点。流行度预测的任务是根据消息传播早期过程中涌现的特征预测其未来的传播趋势,现有基于传播网络特征与拟合函数的预测模型难以解决预测准确率低的问题,因此借助社会学中的弱连接理论,引入连接强度的概念,并融合消息传播早期的流行度构建多元线性回归方程,提出了一种针对 Facebook 知名主页的消息流行度的预测模型TSL。通过在Facebook真实数据集(含154万次转发)上与其他具有代表性的基准模型进行比较,实验表明TSL模型可以对消息的最终转发流行度进行有效预测,预测性能优于同类方法。
The rapid development of online social networks leads to an explosion of information
however
there are great differences in the popularity of different messages
and accurate prediction is always a great difficulty is the current study.Popularity prediction of online content aims to predict the popularity in the future based on its early diffusion status.Existing models for popularity prediction were mostly based on discovering network features or fitting the equation into a varying time function that the accuracy of current popularity prediction model was not high enough.Therefore
with the help of the weak ties theory in sociology
the concept of tie strength was introduced and a multilinear regression equation was constructed combined with the early popularity.A TSL model to predict the popularity of Facebook’s well-known pages was proposed.The main contribution of this article was to solve the problem and few or no work based on sociology.A high linear correlation between the proportion of faithful fans was existed in Facebook homepage with frequent shares in the early and the future popularity.Compared with other baseline models
an experimental study of Facebook (including 1.54 million shares) illustrates the effectiveness of the proposed TSL model
and the performance is better than the existing similar methods.
HUIJBOOM N , VAN DEN BROEK T , FRISSEN V , et al . Key areas in the public sector impact of social computing [J ] .,2009,3. European Communities , 2009 , 3 .
GUPTA M , GAO J , ZHAI C X , et al . Predicting future popularity trend of events in microblogging platforms [J ] . Proceedings of the American Society for Information Science and Technology , 2012 , 49 ( 1 ): 1 - 10 .
ZHAO Y , QIN B , LIU T , et al . Social sentiment sensor:a visualization system for topic detection and topic sentiment analysis on microblog [J ] . Multimedia Tools and Applications , 2016 , 75 ( 15 ): 8843 - 8860 .
BORAH P . Political Facebook use:campaign strategies used in 2008 and 2012 presidential elections [J ] . Journal of Information Technology& Politics , 2016 , 13 ( 4 ): 326 - 338 .
ALBERT-LASZLO B , REKA A . Emergence of scaling in random networks [J ] . Science , 1999 , 286 ( 5439 ): 509 - 512 .
KWAK H , LEE C , PARK H , et al . What is Twitter,a social network or a news media? [C ] // Proceedings of the 19th International Conference on World Wide Web . ACM , 2010 : 591 - 600 .
GOLDER S A , WILKINSON D M , HUBERMAN B A . Rhythms of social interaction:messaging within a massive online network [C ] // Communities and Technologies 2007 . Springer , 2007 : 41 - 66 .
SZABO G , HUBERMAN B A . Predicting the popularity of online content [J ] . Communications of the ACM , 2010 , 53 ( 8 ): 80 - 88 .
FRIEDKIN N E . Information flow through strong and weak ties in intraorganizational social networks [J ] . Social Networks , 1982 , 3 ( 4 ): 273 - 285 .
ABDULLAH S , WU X D . An epidemic model for news spreading on twitter [C ] // 2011 23rd IEEE International Conference on Tools with Artificial Intelligence (ICTAI) . IEEE , 2011 : 163 - 169 .
MATSUBARA Y , SAKURAI Y , PRAKASH B A , et al . Rise and fall patterns of information diffusion:model and implications [C ] // Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . ACM , 2012 : 6 - 14 .
LI H , MA X , WANG F , et al . On popularity prediction of videos shared in online social networks [C ] // Proceedings of the 22nd ACM International Conference on Information & Knowledge Management . ACM , 2013 : 169 - 178 .
CHANG B , ZHU H , GE Y , et al . Predicting the popularity of online serials with autoregressive models [C ] // Proceedings of the 23rd ACM International Conference on Information and Knowledge Management . ACM , 2014 : 1339 - 1348 .
BAO P , SHEN H W , HUANG J , et al . Popularity prediction in microblogging network:a case study on sina weibo [C ] // Proceedings of the 22nd International Conference on World Wide Web . ACM , 2013 : 177 - 178 .
KIM Y . Convolutional neural networks for sentence classification [J ] . arXiv Preprint,arXiv:1408.5882 , 2014 .
CHENG J , ADAMIC L , DOW P A , et al . Can cascades be predicted? [C ] // Proceedings of the 23rd International Conference on World Wide Web . ACM , 2014 : 925 - 936 .
朱海龙 , 云晓春 , 韩志帅 . 基于传播加速度的微博流行度预测方法 [J ] . 计算机研究与发展 , 2018 , 55 ( 6 ): 1282 - 1293 .
ZHU H L , YUN X C , HAN Z S . Weibo popularity prediction method based on propagation acceleration [J ] . Journal of Computer Research and Development , 2018 , 55 ( 6 ): 1282 - 1293 .
CRANE R , SORNETTE D . Robust dynamic classes revealed by measuring the response function of a social system [J ] . Proceedings of the National Academy of Sciences , 2008 , 105 ( 41 ): 15649 - 15653 .
YANG J , LESKOVEC J . Patterns of temporal variation in online media [C ] // Proceedings of the Fourth ACM International Conference on Web Search and Data Mining . ACM , 2011 : 177 - 186 .
LERMAN K , HOGG T . Using a model of social dynamics to predict popularity of news [C ] // Proceedings of the 19th International Conference on World Wide Web . ACM , 2010 : 621 - 630 .
GAO S , MA J , CHEN Z . Modeling and predicting retweeting dynamics on microblogging platforms [C ] // Proceedings of the Eighth ACM International Conference on Web Search and Data Mining . ACM , 2015 : 107 - 116 .
FERRARA E , DE MEO P , FIUMARA G , et al . The role of strong and weak ties in Facebook:a community structure perspective [J ] . arXiv Preprint,arXiv:1203.0535 , 2012 .
BAO P , SHEN H W , JIN X , et al . Modeling and predicting popularity dynamics of microblogs using self-excited hawkes processes [C ] // Proceedings of the 24th International Conference on World Wide Web . ACM , 2015 : 9 - 10 .
0
浏览量
401
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构