浏览全部资源
扫码关注微信
兰州大学信息科学与工程学院,甘肃 兰州 730000
[ "杨凌(1966- ),女,甘肃张掖人,兰州大学副教授、硕士生导师,主要研究方向为机器学习理论与通信系统智能信号处理。" ]
[ "陈亮(1992- ),男,山东临沂人,兰州大学硕士生,主要研究方向为机器学习理论与盲信号处理。" ]
[ "赵膑(1994- ),男,甘肃平凉人,兰州大学硕士生,主要研究方向为神经网络理论及其在盲均衡中的应用。" ]
[ "张国龙(1985- ),男,甘肃武威人,兰州大学硕士生,主要研究方向为水声通信系统盲均衡。" ]
[ "李媛(1994- ),女,山东烟台人,兰州大学硕士生,主要研究方向为极限学习机及其在卫星信道盲均衡中应用。" ]
网络出版日期:2019-10,
纸质出版日期:2019-10-25
移动端阅览
杨凌, 陈亮, 赵膑, 等. 基于复数支持向量回归机的盲均衡算法[J]. 通信学报, 2019,40(10):180-188.
Ling YANG, Liang CHEN, Bin ZHAO, et al. Blind equalization algorithm based on complex support vector regression[J]. Journal on communications, 2019, 40(10): 180-188.
杨凌, 陈亮, 赵膑, 等. 基于复数支持向量回归机的盲均衡算法[J]. 通信学报, 2019,40(10):180-188. DOI: 10.11959/j.issn.1000-436x.2019199.
Ling YANG, Liang CHEN, Bin ZHAO, et al. Blind equalization algorithm based on complex support vector regression[J]. Journal on communications, 2019, 40(10): 180-188. DOI: 10.11959/j.issn.1000-436x.2019199.
基于复数支持向量回归机(CSVR)的框架,提出了一种针对复数信号的新的盲均衡算法,将多模算法的误差函数代入CSVR的惩罚项构造代价函数,利用广泛线性估计建立回归关系,并采用迭代重加权最小二乘方法确定均衡器系数。不同于支持向量回归机对复数信号的实数化处理方式,CSVR利用Wirtinger微积分,将复数信号直接在复数再生核希尔伯特空间进行解析。仿真实验表明,针对QPSK调制信号,在线性信道和非线性信道下,与基于SVR的盲均衡算法相比,通过选取合适的核函数和迭代优化方法,所提算法的均衡性能显著提升。
A new blind equalization algorithm for complex valued signals was proposed based on the framework of complex support vector regression(CSVR).In the proposed algorithm
the error function of multi-modulus algorithm (MMA) was substituted into CSVR to construct the cost function
and the regression relationship was established by widely linear estimation
and the equalizer coefficients were determined by the iterative re-weighted least square (IRWLS) method.Different from spliting the complex valued signals into real valued signals used in support vector regression
the Wirtinger’s calculus was used in complex support vector regression to analyze the complex signals directly in the complex regenerative kernel Hilbert space.Simulation experiments show that for QPSK modulated signals
compared with the blind equalization algorithm based on support vector regression
the equalization performance of the proposed algorithm is significantly improved in linear channel and nonlinear channel by choosing appropriate kernel function and iterative optimization method.
SATO Y . A method of self-recovering equalization for multilevel amplitude-modulation systems [J ] . IEEE Transactions on Communications , 1975 , 23 ( 6 ): 679 - 682 .
BENVENISTE A , GOURSAT M . Blind equalizers [J ] . IEEE Transactions on Communications , 1984 , 32 ( 8 ): 871 - 883 .
YANG J , WERNER J J , DUMONT G A . The multimodulus blind equalization algorithm [C ] // 13th International Conference on Digital Signal Processing . 1997 : 127 - 130 .
YANG J , WERNER J J , DUMONT G A . The multimodulus blind equalization and its generalized algorithms [J ] . IEEE Journal on Selected Areas in Communications , 2002 , 20 ( 5 ): 997 - 1015 .
马思扬 , 彭华 , 王彬 . 适用于稀疏多径信道的稀疏自适应常模盲均衡算法 [J ] . 通信学报 , 2017 , 38 ( 1 ): 149 - 157 .
MA S J , PENG H , WANG B . Sparse adaptive normal mode blind equalization algorithm for sparse multipath channels [J ] . Journal on Communications , 2017 , 38 ( 1 ): 149 - 157 .
ALTAY Y A , KREMLEV A S , GANDALIPOV E R , et al . On the use of the statistical methods for biomedical signals and data processing [C ] // 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus) . IEEE , 2019 : 1129 - 1134 .
VAPNIK V N . The nature of statistical learning theory [M ] . NewYork : SpringerPress , 2000 .
斯蒂芬 . 统计信号处理基础-估计与检测理论 [M ] . 北京 : 电子工业出版社 , 2014 .
STEVEN M K . Fundamentals of statistical signal processing,volumeⅠ:estimation theory [M ] . Beijing : Publishing House of Electronics IndustryPress , 2014 .
BOUBOULIS P , THEODORIDIS S , MAVROFORAKIS C , et al . Complex support vector machines for regression and quaternary classification [J ] . IEEE Transactions on Neural Networks and Learning Systems , 2015 , 26 ( 6 ): 1260 - 1274 .
SANTAMAR´IA I , PANTALEON C , VIELVA L , et al . Blind equalization of constant modulus signals using support vector machines [J ] . IEEE Transactions on Signal Processing , 2004 , 52 ( 6 ): 1773 - 1782 .
LÁZARO M , GONZÁLEZ-OLASOLA J . Blind equalization using the IRWLS formulation of the support vector machine [J ] . Signal Processing , 2009 , 89 ( 7 ): 1436 - 1445 .
SUN C . Blind source separation and equalization based on support vector regression for MIMO systems [J ] . IEICE Transactions on Communications , 2018 , E101 ( B ): 698 - 708 .
SUN C , YANG L , CHEN L , et al . SVR based blind signal recovery for convolutive MIMO systems with high-order QAM signals [J ] . IEEE Access , 2019 , 7 ( 1 ): 23249 - 23260 .
GIACOUMIDIS E , TSOKANOS A , GHANBARISABAGH M , et al . Unsupervised support vector machines for nonlinear blind equalization in CO-OFDM [J ] . IEEE Photonics Technology Letters , 2018 , 30 ( 12 ): 1091 - 1094 .
BOUBOULIS P , THEODORIDIS S . Extension of Wirtinger’s calculus to reproducing kernel Hilbert spaces and the complex kernel LMS [J ] . IEEE Transaction Signal Process , 2011 , 59 ( 3 ): 964 - 978 .
WIRTINGER W . Zur formalen theorieder functionen vonmehr complexen veränderlichen [J ] . Mathematische Nnalen , 1927 , 97 ( 1 ): 357 - 375 .
PEREZ-CRUZ F , NAVIA-VAZQUEZ A , LARCON-DIANA P L , et al . An IRWLS procedure for SVR [C ] // 2000 10th European Signal Processing Conference . EUSIPCO , 2000 :7075361.
杨心凯 , 袁伟娜 . 基于SVR插值的FBMC系统时变信道估计 [J ] . 华东理工大学学报(自然科学版) , 2018 , 44 ( 5 ): 760 - 764 .
YANG X K , YUANG W N . Time-varying channel estimation of FBMC system based on SVR interpolation [J ] . Journal of East China University of Science and Technology (Natural Science Edition) , 2018 , 44 ( 5 ): 760 - 764 .
NOCEDAL J , WRIGHT S J . Numerical optimization [M ] . Berlin : SpringerPress , 1999 .
KOBAYASHI K , KITAKOSHI D , NAKANO R . Yet faster method to optimize SVR hyperparameters based on minimizing cross-validation error [C ] // IEEE International Joint Conference on Neural Networks . IEEE , 2005 : 871 - 876 .
曾娟 , 王颖 , 李晓娜 , 等 . 基于频域迭代判决反馈均衡的低复杂度FTN接收机 [J ] . 通信学报 , 2017 , 38 ( 4 ): 190 - 198 .
ZENG J , WANG Y , LI X N , et al . Low-complexity FTN receivers based on frequency domain iterative decision feedback equalization [J ] . Journal on Communications , 2017 , 38 ( 4 ): 190 - 198 .
唐成凯 , 张玲玲 , 廉保旺 . 卫星高阶调制信号通信下非线性误差修正均衡方法 [J ] . 通信学报 , 2017 , 38 ( 1 ): 117 - 125 .
TANG C K , ZHANG L L , LIANG B W . Nonlinear error correction equalization method for satellite high-order modulated signal communication [J ] . Journal on Communications , 2017 , 38 ( 1 ): 117 - 125 .
周志华 . 机器学习 [M ] . 北京 : 清华大学出版社 , 2016 :128.
ZHOU Z H . Machine learning [M ] . Beijing : Tsinghua University PressPress , 2016 :128.
0
浏览量
266
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构