浏览全部资源
扫码关注微信
1. 河南工业大学信息科学与工程学院,河南 郑州450001
2. 河南工业大学理学院,河南 郑州450001
[ "赵晨阳(1982- ),男,河南郸城人,博士,河南工业大学讲师,主要研究方向为人工智能、深度学习、智能推荐等。" ]
[ "王俊岭(1983- ),男,河南郑州人,博士,河南工业大学讲师,主要研究方向为人工智能、组合优化、智能推荐等。" ]
网络出版日期:2019-09,
纸质出版日期:2019-09-25
移动端阅览
赵晨阳, 王俊岭. 基于隐含上下文支持向量机的服务推荐方法[J]. 通信学报, 2019,40(9):61-73.
Chenyang ZHAO, Junling WANG. Service recommendation method based on context-embedded support vector machine[J]. Journal on communications, 2019, 40(9): 61-73.
赵晨阳, 王俊岭. 基于隐含上下文支持向量机的服务推荐方法[J]. 通信学报, 2019,40(9):61-73. DOI: 10.11959/j.issn.1000-436x.2019190.
Chenyang ZHAO, Junling WANG. Service recommendation method based on context-embedded support vector machine[J]. Journal on communications, 2019, 40(9): 61-73. DOI: 10.11959/j.issn.1000-436x.2019190.
结合上下文信息和支持向量机(SVM),提出了一种基于隐含上下文支持向量机的服务推荐方法。首先,根据用户所处的不同上下文信息对用户评分矩阵进行修正,使其带有隐含的上下文信息;其次,将带有隐含上下文信息的服务评分向量作为服务的特征向量,构建训练集,上下文信息的引入并没有增加服务特征向量的维数;然后,根据训练集使用SVM获得目标用户的分类超平面,构建SVM预测模型;最后,计算目标用户未使用服务的特征向量点与超平面的距离,综合考虑该距离以及相似用户的推荐,做出服务推荐。实验结果表明,所提推荐方法在不同的评分矩阵密度下均具有较好的推荐精度,并且能够缩短推荐时间。
Combined with contexts and SVM
a service recommendation method based on context-embedded support vector machine (SRM-CESVM) was proposed.Firstly
according to the different contexts
the user rating matrix was modified to make it with embedded contexts.Secondly
the rating vectors with embedded contexts were used as service feature vectors to construct training set
meanwhile the dimension of service feature vector were not increased by the introduction of contexts.Thirdly
a separation hyperplane for active user was acquired based on training set using SVM
and then the SVM prediction model was built.Finally
the distances between the feature vector points representing the active users' unused services and the hyperplane were calculated.Considering the distances and the recommendation of similar users
the service list was recommended.The experimental results further demonstrate that the proposed method has better recommendation accuracy under different rating matrix densities and can reduce recommendation time.
SHU J B , SHEN X X , LIU H , et al . A content-based recommendation algorithm for learning resources [J ] . Multimedia Systems , 2018 , 24 ( 2 ): 163 - 173 .
LI C Y , HE K J . CBMR:an optimized MapReduce for item-based collaborative filtering recommendation algorithm with empirical analysis [J ] . Concurrency and Computation:Practice and Experience , 2017 , 29 ( 10 ):e4092.
LI D S , CHEN C , LV Q , et al . An algorithm for efficient privacy-preserving item-based collaborative filtering [J ] . Future Generation Computer Systems , 2016 , 55 : 311 - 320 .
AI-HASSAN M , LU H Y , LU J . A semantic enhanced hybrid recommendation approach:a case study of e-Government tourism service recommendation system [J ] . Decision Support Systems , 2015 ( 72 ): 97 - 109 .
孟桓羽 , 刘真 , 王芳 , 等 . 基于图和改进 K 近邻模型的高效协同过滤推荐算法 [J ] . 计算机研究与发展 , 2017 , 54 ( 7 ): 1426 - 1438 .
MENG H Y , LIU Z , WANG F , et al . An efficient collaborative filtering algorithm based on graph model and improved KNN [J ] . Journal of Computer Research and Development , 2017 , 54 ( 7 ): 1426 - 1438 .
李改 , 陈强 , 李磊 . 基于评分预测与排序预测的协同过滤推荐算法 [J ] . 电子学报 , 2017 , 45 ( 12 ): 3070 - 3075 .
LI G , CHEN Q , LI L . Collaborative filtering recommendation algorithm based on rating prediction and ranking prediction [J ] . ACTA Electronica Sinica , 2017 , 45 ( 12 ): 3070 - 3075 .
KUSHWAHA N , SUN X D , SINGH B , et al . A lesson learned from PMF based approach for semantic recommender system [J ] . Journal of Intelligent Information Systems , 2018 , 50 ( 3 ): 441 - 453 .
REN L F , WANG W J . An SVM-based collaborative filtering approach for Top-N Web services recommendation [J ] . Future Generation Computer Systems , 2018 ( 78 ): 531 - 543 .
OKU K , NAKAJIMA S , MIYAZAKI J , et al . Context-aware SVM for context-dependent information recommendation [C ] // The 7th International Conference on Mobile Data Management . IEEE , 2006 : 109 - 112 .
MA L R , SONG D D , LIAO L J , et al . PSVM:a preference-enhanced SVM model using preference data for classification [J ] . Science China Information Sciences , 2017 , 60 ( 12 ): 122 - 103 .
WEI J , HE J H , CHEN K , et al . Collaborative filtering and deep learning based recommendation system for cold start items [J ] . Expert Systems with Applications , 2017 ( 69 ): 29 - 39 .
黄立威 , 刘艳博 , 李德毅 . 基于深度学习的推荐系统 [J ] . 计算机学报 , 2017 , 40 ( 156 ): 1 - 30 .
HUANG L W , LI Y B , LI D Y . Deep learning based recommender systems [J ] . Chinese Journal of Computers , 2017 , 40 ( 156 ): 1 - 30 .
YAO L N , SHENG Q Z , NGU A H H , et al . Unified collaborative and content-based Web service recommendation [J ] . IEEE Transactions on Service Computing , 2015 , 8 ( 3 ): 453 - 466 .
AFIFY Y M , MOAWAD I F , BADR N L , et al . Enhanced similarity measure for personalized cloud services recommendation [J ] . Concurrency and Computation:Practice and Experience , 2017 , 29 ( 8 ):e4020.
ZHAO C Y , WANG J L . Network education video recommendation algorithm based on context and trust relationship [C ] // The 4th IEEE International Conference on software Engineering and Service Science . IEEE , 2013 : 537 - 540 .
YIN C Y , WANG J , PARK J H . An improved recommendation algorithm for big data cloud service based on the trust in sociology [J ] . Neurocomputing , 2017 ( 256 ): 49 - 55 .
张宇 , 王文剑 , 赵胜男 . 基于正负反馈的SVM协同过滤Top-N推荐算法 [J ] . 小型微型计算机系统 , 2017 , 38 ( 5 ): 961 - 966 .
ZHANG Y , WANG W J , ZHAO S N . SVM collaborative filtering Top-N recommendation algorithm based on positive and negative feedback [J ] . Journal of Chinese Computer Systems , 2017 , 38 ( 5 ): 961 - 966 .
CHENG S L , ZHANG B F , ZOU G B . A rating-based integrated recommendation framework with improved collaborative filtering approaches [J ] . International Journal of Computers,Communications and Control , 2017 , 12 ( 3 ): 307 - 322 .
0
浏览量
845
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构