浏览全部资源
扫码关注微信
1. 南京邮电大学计算机学院,江苏 南京 210023
2. 南京邮电大学江苏省大数据安全与智能处理重点实验室,江苏 南京 210023
[ "王海艳(1974- ),女,江苏东台人,博士,南京邮电大学教授,主要研究方向为服务计算、可信计算、大数据应用与云计算技术、隐私保护技术等。" ]
[ "陆金祥(1993- ),男,江苏姜堰人,南京邮电大学硕士生,主要研究方向为推荐系统和隐私保护技术。" ]
网络出版日期:2019-09,
纸质出版日期:2019-09-25
移动端阅览
王海艳, 陆金祥. 面向群组推荐的个性化隐私保护方法[J]. 通信学报, 2019,40(9):106-115.
Haiyan WANG, Jinxiang LU. Personalized privacy protection method for group recommendation[J]. Journal on communications, 2019, 40(9): 106-115.
王海艳, 陆金祥. 面向群组推荐的个性化隐私保护方法[J]. 通信学报, 2019,40(9):106-115. DOI: 10.11959/j.issn.1000-436x.2019183.
Haiyan WANG, Jinxiang LU. Personalized privacy protection method for group recommendation[J]. Journal on communications, 2019, 40(9): 106-115. DOI: 10.11959/j.issn.1000-436x.2019183.
为解决现有的隐私保护方法不能很好地满足群组推荐中用户的个性化隐私需求的问题,提出了一种面向群组推荐的基于可信客户端的个性化隐私保护框架及基于此框架的群组敏感偏好保护方法。所提方法在可信客户端收集群组内用户的历史数据以及隐私偏好需求,利用用户敏感主题相似性发现组内相似用户,通过对前k个用户进行随机的协同扰动,实现群组内用户的个性化隐私保护。仿真对比实验表明,所提的个性化隐私保护方法能够满足不同用户的隐私需求,具有更好的性能。
To address the problem that most of the existing privacy protection methods can not satisfy the user’s personalized requirements very well in group recommendation
a user personalized privacy protection framework based on trusted client for group recommendation (UPPPF-TC-GR) followed with a group sensitive preference protection method (GSPPM) was proposed.In GSPPM
user’s historical data and privacy preference demands were collected in the trusted client
and similar users were selected in the group based on sensitive topic similarity between users.Privacy protection for users who had privacy preferences in the group was realized by randomization of cooperative disturbance to top k similar users.Simulation experiments show that the proposed GSPPM can not only satisfy privacy protection requirements for each user but also achieve better performance.
SWEENEY L . k-anonymity:a model for protecting privacy [J ] . International Journal of Uncertainty,Fuzziness and Knowledge-Based Systems , 2002 , 10 ( 5 ): 557 - 570 .
KAPLAN E , GURSOY M E , NERGIZ M E , et al . Known sample attacks on relation preserving data transformations [J ] . IEEE Transactions on Dependable and Secure Computing , 2017 , 1 ( 32 ): 101 - 108 .
AHMED K W , MOURI I J , ZAMAN R , et al . A privacy preserving personalized group recommendation framework [C ] // International Conference on Advanced Computing . IEEE , 2016 : 594 - 598 .
LU Z , SHEN H . A security-assured accuracy-maximised privacy preserving collaborative filtering recommendation algorithm [C ] // International Database Engineering and Applications Symposium . ACM , 2015 : 72 - 80 .
LI C , PALANISAMY B , JOSHI J . SocialMix:supporting privacy-aware trusted social networking services [C ] // IEEE International Conference on Web Services . IEEE , 2016 : 115 - 122 .
LIU P , LI Y , SANG Y , et al . Anonymity-based privacy preserving network data publication [C ] // Trustcom/BigDataSE/ISPA . IEEE , 2017 : 823 - 828 .
TANG Q , WANG J . Privacy-preserving friendship-based recommender systems [J ] . IEEE Transactions on Dependable and Secure Computing , 2018 , 15 ( 5 ): 784 - 796 .
AHMADI M , GHAHFAROKHI B S . Preserving privacy in location based mobile coupon systems using anonymous authentication scheme [C ] // International Iranian Society of Cryptology Conference on Information Security and Cryptology . IEEE , 2016 : 60 - 65 .
GUO L , ZHANG C , FANG Y . A trust-based privacy-preserving friend recommendation scheme for online social networks [J ] . IEEE Transactions on Dependable & Secure Computing , 2015 , 12 ( 4 ): 413 - 427 .
PENG T , LIU Q , WANG G . Enhanced location privacy preserving scheme in location-based services [J ] . IEEE Systems Journal , 2014 , 11 ( 1 ): 219 - 230 .
ZHU J , HE P , ZHENG Z , et al . A privacy-preserving QoS prediction framework for Web service recommendation [C ] // IEEE International Conference on Web Services . IEEE , 2015 : 241 - 248 .
GAI K , QIU M , ZHAO H , et al . Privacy-aware adaptive data encryption strategy of big data in cloud computing [C ] // IEEE International Conference on Cyber Security and Cloud Computing . IEEE , 2016 : 273 - 278 .
何明 , 常盟盟 , 吴小飞 . 一种基于差分隐私保护的协同过滤推荐方法 [J ] . 计算机研究与发展 , 2017 , 54 ( 7 ): 1439 - 1451 .
HE M , CHANG M M , WU X F . A collaborative filtering recommen-dation method based on differential privacy protection [J ] . Computer Research and Development , 2017 , 54 ( 7 ): 1439 - 1451 .
张啸剑 , 孟小峰 . 面向数据发布和分析的差分隐私保护 [J ] . 计算机学报 , 2014 , 37 ( 4 ): 927 - 949 .
ZHANG X J , MENG X F . Differential privacy protection for data Release and analysis [J ] . Journal of Computer Science , 2014 , 37 ( 4 ): 927 - 949 .
熊平 , 朱天清 , 王晓峰 . 差分隐私保护及其应用 [J ] . 计算机学报 , 2014 , 37 ( 1 ): 101 - 122 .
XIONG P , ZHU T Q , WANG X F . Differential privacy protection and its application [J ] . Journal of Computer Science , 2014 , 37 ( 1 ): 101 - 122 .
马鑫迪 , 李辉 , 马建峰 , 等 . 轻量级位置感知推荐系统隐私保护框架 [J ] . 计算机学报 , 2017 , 40 ( 5 ): 1017 - 1030 .
MA X D , LI H , MA J F , et al . Privacy protection framework of light-weight location-aware recommendation system [J ] . Journal of Com-puter Science , 2017 , 40 ( 5 ): 1017 - 1030 .
姜火文 , 曾国荪 , 马海英 . 面向表数据发布隐私保护的贪心聚类匿名方法 [J ] . 软件学报 , 2017 , 28 ( 2 ): 341 - 351 .
JIANG H W , ZENG G S , MA H Y . Greedy clustering anonymous method for privacy protection of tabular data release [J ] . Journal of Software , 2017 , 28 ( 2 ): 341 - 351 .
YANG M , ZHU T , MA L , et al . Privacy preserving collaborative filtering via the Johnson-Lindenstrauss transform [C ] // Trustcom/BigDataSE/ICESS . IEEE , 2017 : 417 - 424 .
刘海 , 李兴华 , 雒彬 , 等 . 基于区块链的分布式 K 匿名位置隐私保护方案 [J ] . 计算机学报 , 2019 , 42 ( 5 ): 942 - 960 .
LIU H , LI X H , LUO B , et al . Distributed K anonymous location privacy protection scheme based on block chain [J ] . Journal of Com-puter Science , 2019 , 42 ( 5 ): 942 - 960 .
林荣智 , 苗耀锋 . 基于用户项目特征分组的隐私保护算法 [J ] . 沈阳工业大学学报 , 2018 , 40 ( 6 ): 670 - 675 .
LIN R Z , MIAO Y F . Privacy protection algorithm based on user project feature grouping [J ] . Journal of Shenyang University of Tech-nology , 2008 , 40 ( 6 ): 670 - 675 .
WANG P , YANG J , ZHANG J . A strategy toward collaborative filter recommended location service for privacy protection [J ] . Sensors , 2018 , 18 ( 5 ): 1522 - 1541 .
LUO Z , CHEN Z . A privacy preserving group recommender based on cooperative perturbation [C ] // International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery . IEEE Computer Society , 2014 : 106 - 111 .
SHANG S , HUI Y , HUI P , et al . Privacy preserving recommendation system based on groups [J ] . Computer Science , 2013 , 5 ( 1 ): 219 - 246 .
WU Z , LI G , LIU Q , et al . Covering the sensitive subjects to protect personal privacy in personalized recommendation [J ] . IEEE Transactions on Services Computing , 2016 , 11 ( 3 ): 493 - 506 .
张玉洁 , 杜雨露 , 孟祥武 . 组推荐系统及其应用研究 [J ] . 计算机学报 , 2016 , 39 ( 4 ): 746 - 760 .
ZHANG Y J , DU Y L , MENG X W . Group recommendation system and its application research [J ] . Journal of Computer Science , 2016 , 39 ( 4 ): 746 - 760 .
HE Y , ZHANG K , WANG H , et al . Impact factor-based group recommendation scheme with privacy preservation in MSNs [C ] // 2017 IEEE International Conference on Communications . IEEE , 2017 .
YIN C , SHI L , SUN R , et al . Improved collaborative filtering recommendation algorithm based on differential privacy protection [J ] . The Journal of Super Computing , 2019 ( 7 ): 1 - 14 .
耿魁 , 万盛 , 李凤华 , 等 . 基于隐私匹配的服务代理发现方法 [J ] . 通信学报 , 2016 , 37 ( 8 ): 136 - 143 .
GENG K , WAN S , LI F H , et al . Service agent discovery method based on privacy matching [J ] . Journal on Communications , 2016 , 37 ( 8 ): 136 - 143 .
张少波 , 刘琴 , 王国军 . 基于位置混淆的轨迹隐私保护方法 [J ] . 通信学报 , 2018 , 39 ( 7 ): 85 - 95 .
ZHANG S B , LIU Q , WANG G J . Trajectory privacy protection method based on location confusion [J ] . Journal on Communications , 2018 , 39 ( 7 ): 85 - 95 .
王涛春 , 刘盈 , 金鑫 , 等 . 群智感知中基于 k-匿名的位置及数据隐私保护方法研究 [J ] . 通信学报 , 2018 , 39 ( S1 ): 176 - 184 .
WANG T C , LIU Y , JIN X , et al . Research on k-anonymise-based location and data privacy protection methods in swarm intelligence perception [J ] . Journal on Communications , 2018 , 39 ( S1 ): 176 - 184 .
0
浏览量
741
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构