浏览全部资源
扫码关注微信
1. 哈尔滨工程大学水声工程学院,黑龙江 哈尔滨 150001
2. 中国船舶工业综合技术经济研究院,北京 100081
[ "殷敬伟(1980- ),男,黑龙江尚志人,博士,哈尔滨工程大学教授、博士生导师,主要研究方向为水声通信及信号处理。" ]
[ "罗五雄(1995- ),男,湖北汉川人,哈尔滨工程大学硕士生,主要研究方向为水声信号处理、机器学习。" ]
[ "李理(1987- ),男,黑龙江哈尔滨人,博士,哈尔滨工程大学讲师,主要研究方向为图像及语音信号处理、机器学习、模式识别。" ]
[ "韩笑(1988- ),男,山东兖州人,博士,哈尔滨工程大学讲师、硕士生导师,主要研究方向为水声通信侦察与对抗、极地声学、声纳信号处理。" ]
[ "郭龙祥(1976- ),男,黑龙江哈尔滨人,博士,哈尔滨工程大学副教授、硕士生导师,主要研究方向为水声信号处理。" ]
[ "王建峰(1984- ),男,河北沧州人,博士,中国船舶工业综合技术经济研究院工程师,主要研究方向为数据分析、挖掘与计算机技术。" ]
网络出版日期:2019-10,
纸质出版日期:2019-10-25
移动端阅览
殷敬伟, 罗五雄, 李理, 等. 基于降噪自编码器的水声信号增强研究[J]. 通信学报, 2019,40(10):119-126.
Jingwei YIN, Wuxiong LUO, Li LI, et al. Enhancement of underwater acoustic signal based on denoising automatic-encoder[J]. Journal on communications, 2019, 40(10): 119-126.
殷敬伟, 罗五雄, 李理, 等. 基于降噪自编码器的水声信号增强研究[J]. 通信学报, 2019,40(10):119-126. DOI: 10.11959/j.issn.1000-436x.2019181.
Jingwei YIN, Wuxiong LUO, Li LI, et al. Enhancement of underwater acoustic signal based on denoising automatic-encoder[J]. Journal on communications, 2019, 40(10): 119-126. DOI: 10.11959/j.issn.1000-436x.2019181.
针对主动声呐中回波信号特征提取困难的问题,提出了一种利用降噪自编码器与卷积降噪自编码器相结合的自编码器算法。首先利用降噪自编码器在信号整体上的降噪优势,对含噪信号进行预处理;然后结合卷积降噪自编码器对信号局部特征的优化,对信号进行局部降噪,从而实现信号增强。所提算法直接以接收信号的时域波形作为特征输入,保留了信号的幅度与相位特征。实验结果表明,所提算法不仅有效降低了信号中的噪声分量,而且在时域和频域上均达到了较好的恢复效果。
Aiming at the difficulty of feature extraction of echo signal in active sonar
a self-encoder algorithm based on the combination of denoising self-encoder and convolution denoising self-encoder was proposed.Firstly
the preprocessing of noisy signal was carried out by using the advantage of denoising self-encoder in signal as a whole
and then the local feature of signal was optimized by combining convolutional denoising self-encoder to denoise the signal locally
so as to enhance the signal.The time domain waveform of the received signal is used as the feature input by the algorithm
and retains the signal’s amplitude and phase characteristics.The experimental results show that the algorithm not only effectively reduces the noise component in the signal
but also achieves better recovery effect in both time and frequency domains.
侯平魁 , 林良骥 . 水下目标辐射噪声时间序列的非线性降噪处理 [J ] . 声学学报 , 2001 ( 3 ): 207 - 211 .
HOU P K , LIN L J . Nonlinear noise reduction of underwater target radiated noise time series [J ] . Journal of Acoustics , 2001 ( 3 ): 207 - 211 .
FRISON T W , ABARBANEL H D I , CEMBROLA J , et al . Chaos in ocean ambient “noise” [J ] . Journal of the Acoustical Society of America , 1996 , 99 ( 3 ): 1527 - 1539 .
HINTON G E , SALAKHUTDINOV R R . Reducing the dimensionality of data with neutral network [J ] . Science , 2006 , 313 ( 5786 ): 504 - 507 .
LI H , JIAN S , XU Z , et al . Multimodal 2D+3D facial expression recognition with deep fusion convolutional neural network [J ] . IEEE Transactions on Multimedia , 2017 , 19 ( 12 ):1.
BENGIO Y , LAMBLIN P , DAN P , et al . Greedy layer-wise training of deep networks [J ] . Advances in Neural Information Processing Systems , 2007 ( 19 ): 153 - 160 .
KUMAR A , FLORENCIO D . Speech enhancement in multiple-noise conditions using deep neural networks [J ] . arXiv Preprint,arXiv:1605.02427 , 2016 .
KIVINEN J , WARMUTH M K . Exponentiated gradient versus gradient descent for linear predictors [M ] . Pittsburgh : Academic PressPress , 1997 .
TAN S , LI B . Stacked convolutional auto-encoders for steganalysis of digital images [C ] // Signal and Information Processing Association Annual Summit and Conference . IEEE , 2014 : 1 - 4 .
殷敬伟 , 惠俊英 , 蔡平 , 等 . 基于分数阶Fourier变换的水声信道参数估计 [J ] . 系统工程与电子技术 , 2007 , 29 ( 10 ): 1624 - 1627 .
YIN J W , HUI J Y , CAI P , et al . Estimation of underwater acoustic channel parameters based on fractional Fourier transform [J ] . Systems Engineering and Electronic Technology , 2007 , 29 ( 10 ): 1624 - 1627 .
DU B , XIONG W , WU J , et al . Stacked convolutional denoising auto-encoders for feature representation [J ] . IEEE Transactions on Cybernetics , 2017 , 47 ( 4 ): 1017 - 1027 .
0
浏览量
927
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构