浏览全部资源
扫码关注微信
中国科学院软件研究所天基综合信息系统重点实验室,北京 100190
[ "周鑫(1986- ),男,河南项城人,博士,中国科学院软件研究所副研究员、硕士生导师,主要研究方向为认知无线网络、无线信道接入、射频机器学习等。" ]
[ "何晓新(1966- ),女,湖南衡阳人,中国科学院软件研究所研究员,主要研究方向为认知无线电、通信指挥系统等。" ]
[ "郑昌文(1969- ),男,湖北大冶人,博士,中国科学院软件研究所研究员、博士生导师,主要研究方向为计算机图形学、空间系统仿真、智能搜索等。" ]
网络出版日期:2019-07,
纸质出版日期:2019-07-25
移动端阅览
周鑫, 何晓新, 郑昌文. 基于图像深度学习的无线电信号识别[J]. 通信学报, 2019,40(7):114-125.
Xin ZHOU, Xiaoxin HE, Changwen ZHENG. Radio signal recognition based on image deep learning[J]. Journal on communications, 2019, 40(7): 114-125.
周鑫, 何晓新, 郑昌文. 基于图像深度学习的无线电信号识别[J]. 通信学报, 2019,40(7):114-125. DOI: 10.11959/j.issn.1000-436x.2019167.
Xin ZHOU, Xiaoxin HE, Changwen ZHENG. Radio signal recognition based on image deep learning[J]. Journal on communications, 2019, 40(7): 114-125. DOI: 10.11959/j.issn.1000-436x.2019167.
提出了一种利用图像深度学习解决无线电信号识别问题的技术思路。首先把无线电信号具象化为一张二维图片,将无线电信号识别问题转化为图像识别领域的目标检测问题;进而充分利用人工智能在图像识别领域的先进成果,提高无线电信号识别的智能化水平和复杂电磁环境下的识别能力。基于该思路,提出了一种基于图像深度学习的无线电信号识别算法——RadioImageDet 算法。实验结果表明,所提算法能有效识别无线电信号的波形类型和时/频坐标,在实地采集的12种、4 740个样本的数据集中,识别准确率达到86.04%,mAP值达到77.72,检测时间在中等配置的台式计算机上仅需33 ms,充分验证了所提思路的可行性和所提算法的有效性。
A technical idea was innovatively proposed that uses image deep learning to solve the problem of radio signal recognition.First
the radio signal was transformed into a two-dimensional picture
and the radio signal recognition problem was transformed into the object detection problem in the field of image recognition.Then
the advanced achievements about image recognition were used to improve the intelligence and ability of radio signal recognition in complex electromagnetic environment.Based on the proposed idea
a novel radio signal recognition algorithm named RadioImageDet was proposed.The experimental results show that the algorithm can effectively identify the waveform types and time/frequency coordinates of radio signals.After training and testing on the self-collected data set with 12 types and 4 740 samples
the accuracy reaches 86.04% and the mAP value reaches 77.72
while the detection time is only 33 ms on the medium configured desktop computer.
DOBRE O A . Signal identification for emerging intelligent radios:classical problems and new challenges [J ] . IEEE Instrumentation &Measurement Magazine , 2015 , 18 ( 2 ): 11 - 18 .
YAO Y , HUANG Z . Communicational signals’ modulation recognition (Chinese with English abstract) [J ] . Communications Technology , 2003 , 6 ( 1 ): 41 - 50 .
AZZOUZ E E , NANDI A K . Automatic identification of digital modulation types [J ] . Signal Processing , 1995 , 47 ( 1 ): 55 - 69 .
LOPATKA J , PEDZISZ M . Automatic modulation classification using statistical moments and a fuzzy classifier [C ] // International Conference on Signal Processing Proceedings . 2000 3 ( 1 ): 1500 - 1506 .
NANDI A K , AZZOUZ E E . Algorithms for automatic modulation recognition of communication signals [J ] . IEEE Transactions on Communications , 1998 , 46 ( 4 ): 431 - 436 .
REICHERT J , . Automatic classification of communication signals using higher order statistics [C ] // IEEE International Conference on Acoustics,Speech,and Signal Processing . IEEE , 1992 : 221 - 224 .
SPOONER C M , MODY A N , CHUAN G J . Modulation recognition using second-and higher-order cyclostationarity [C ] // IEEE International Symposium on Dynamic Spectrum Access Networks . IEEE , 2017 : 1 - 3 .
SOLIMA N S S , HSUE S Z . Signal classification using statisticalmoments [J ] . IEEE Transactions on Communications , 1992 , 40 ( 5 ): 908 - 916 .
YAMASHITA Y , OCHIAI H . A classification of OFDM signals with or without DFT precoding based on high-order moment [C ] // IEEE International Symposium on Dynamic Spectrum Access Networks . IEEE , 2017 : 1 - 2 .
CHEN J , KUO Y , LI J , et al . Review of automatic communication signals recognition (Chinese with English abstract) [J ] . Journal of Circuits and Systems , 2005 , 10 ( 5 ): 102 - 109 .
PARNAS D L . The real risks of artificial intelligence [J ] . Communications of the ACM , 2017 , 60 ( 10 ): 27 - 31 .
WONG M L D , NANDI A K . Automatic digital modulation recognition using spectral and statistical features with multi-layer perceptron [C ] // Signal Processing and its Applications . 2001 : 390 - 393 .
ARULAMPALAM G , RAMAKONAR V , BOUZERDOUM A , et al . Classification of digital modulated schemes using neural networks [C ] // International Symposium on Signal Processing and its Applications . 1999 : 649 - 652 .
TRIANTAFYLLAKIS K , SURLIGAS M , VARDAKI S G . Phasma:an automatic modulation classification system based on random forest [C ] // IEEE International Symposium on Dynamic Spectrum Access Networks . IEEE , 2017 : 1 - 3 .
O’SHEA T , CORGAN J , CLANCY T C . Convolutional radio modulation recognition networks [C ] // International Conference on Engineering Applications of Neural Networks . 2016 : 213 - 226 .
O’SHEA T , CORGAN J , CLANCY T C . Unsupervised representation learning of structured radio communication signals [C ] // First International Workshop on Sensing,Processing and Learning for Intelligent Machines . 2016 : 1 - 5 .
O’SHEA T , WEST N , VONDAL M , et al . Semi-supervised radio signal identification [C ] // International Conference on Advanced Communication Technology . 2017 : 33 - 38 .
O’SHEA T , WEST N . Radio machine learning dataset generation with GNU radio [C ] // Proceedings of the GNU Radio Conference . 2016 : 1 - 6 .
ZIEGLER J L , ARN R T , CHAMBERS W . Modulation recognition with GNU radio,Keras and HackRF [C ] // IEEE International Symposium on Dynamic Spectrum Access Networks . IEEE , 2017 : 1 - 3 .
KARRA K , KUZDEBA S , PETERSEN J . Modulation recognition using hierarchical deep neural networks [C ] // IEEE International Symposium on Dynamic Spectrum Access Networks . IEEE , 2017 : 1 - 3 .
WEST N , O'SHEA T , . Deep architectures for modulation recognition [C ] // IEEE International Symposium on Dynamic Spectrum Access Networks . IEEE , 2017 : 1 - 6 .
WEST N , HARWELL K , MCCALL B . DFT signal detection and channelization with a deep neural network modulation classifier [C ] // IEEE International Symposium on Dynamic Spectrum Access Networks . IEEE , 2017 : 1 - 3 .
ARUMUGAM K , KADAMPOT I , TAHMASBI M , et al . Modulation recognition using side information and hybrid learning [C ] // IEEE International Symposium on Dynamic Spectrum Access Networks . IEEE , 2017 : 1 - 2 .
HUANG L , YU J , SHEN Z , et al . Radio individual identification via stable communication signals based on subordinate component analysis [C ] // IET International Radar Conference . 2016 , 1 , 1 - 4 .
YUAN Y , HUANG Z , WANG F , et al . Radio specific emitter identification based on nonlinear characteristics of signal [C ] // IEEE International Black Sea Conference on Communications and Networking . IEEE , 2015 : 77 - 81 .
AHMAD K , SHRESTA G , MEIER U , et al . Neuro-fuzzy signal class IFIER (NFSC) for standard wireless technologies [C ] // International Symposium on Wireless Communication Systems . 2010 : 616 - 620 .
SCHMIDT M , BLOCK D , MEIER U . Wireless interference identification with convolutional neural networks [J ] . IEEE 15th International Conference on Industrial Informatics , 2017 : 180 - 185 .
ZHANG M , DIAO M , GUO L . Convolutional neural networks for automatic cognitive radio waveform recognition [J ] . IEEE Access , 2017 , 5 ( 1 ): 11074 - 11082 .
GIRSHICK R , DONAHUE J , DARRELL , et al . Rich feature hierarchies for accurate object detection and semantic segmentation [C ] // IEEE Conference on Computer Vision and Pattern Recognition . IEEE , 2014 1 : 580 - 587 .
GIRSHICK R , . Fast R-CNN [C ] // IEEE International Conference on Computer Vision . IEEE , 2015 : 1440 - 1448 .
REN S , HE K , GIRSHICK R , et al . Faster R-CNN:towards real-time object detection with region proposal networks [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2017 , 39 ( 6 ): 1137 - 1149 .
LIN T , DOLLAR P , GIRSHICK R , et al . Feature pyramid networks for object detection [C ] // IEEE Conference on Computer Vision and Pattern Recognition . IEEE , 2017 : 936 - 944 .
REDMON J , FARHADI A . YOLO9000:better,faster,stronger [C ] // IEEE Conference on Computer Vision and Pattern Recognition . IEEE , 2017 : 6517 - 6525 .
LIU W , ANGUELOV D , ERHAN D , et al . SSD:single shot multibox detector [C ] // European Conference on Computer Vision . 2016 : 21 - 37 .
DANEV B , CAPKUN S . Transient-based identification of wireless sensor nodes [C ] // International Conference on Information Processing in Sensor Networks . 2009 : 25 - 36 .
SZEGEDY C , LIU W , JIA Y , et al . Going deeper with convolutions [C ] // IEEE Conference on Computer Vision and Pattern Recognition . IEEE , 2015 : 1 - 9 .
HE K , ZHANG X , REN S , et al . Deep residual learning for image recognition [C ] // IEEE Conference on Computer Vision and Pattern Recognition . IEEE , 2016 : 770 - 778 .
0
浏览量
3045
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构