浏览全部资源
扫码关注微信
1. 武汉大学空天信息安全与可信计算教育部重点实验室,湖北 武汉 430072
2. 武汉大学国家网络安全学院,湖北 武汉 430072
[ "王丽娜(1964– ),女,辽宁营口人,博士,武汉大学教授、博士生导师,主要研究方向为软件和系统安全、信息隐藏、人工智能安全等。" ]
[ "郭晓东(1994– ),男,山西大同人,武汉大学硕士生,主要研究方向为自然语言处理、人工智能安全等。" ]
[ "汪润(1991– ),男,安徽安庆人,武汉大学博士,主要研究方向为软件和系统安全、人工智能安全等。" ]
网络出版日期:2019-06,
纸质出版日期:2019-06-25
移动端阅览
王丽娜, 郭晓东, 汪润. 面向中文用户评论的自动化众包攻击方法[J]. 通信学报, 2019,40(6):1-13.
Li’na WANG, Xiaodong GUO, Run WANG. Automated crowdturfing attack in Chinese user reviews[J]. Journal on communications, 2019, 40(6): 1-13.
王丽娜, 郭晓东, 汪润. 面向中文用户评论的自动化众包攻击方法[J]. 通信学报, 2019,40(6):1-13. DOI: 10.11959/j.issn.1000-436x.2019149.
Li’na WANG, Xiaodong GUO, Run WANG. Automated crowdturfing attack in Chinese user reviews[J]. Journal on communications, 2019, 40(6): 1-13. DOI: 10.11959/j.issn.1000-436x.2019149.
面向文本的自动化众包攻击具有攻击成本低、隐蔽性强等特点,这种攻击可以自动生成大量虚假评论,影响用户评论社区的健康发展。近些年来,有学者研究面向英文评论社区的文本自动化众包攻击,但是鲜有针对中文评论社区的自动化众包攻击的研究,针对这一不足,提出了基于汉字嵌入LSTM模型的中文文本自动化生成攻击方法。通过训练由汉字嵌入网络、LSTM网络和Softmax全连接网络组成的多层网络模型,并引入温度参数T构建攻击模型。实验中,从淘宝网的在线用户评论中抓取了超过5万条真实的用户评论数据,验证所提攻击方法的有效性。实验结果表明,生成的虚假评论可以有效地欺骗基于语言学分析的分类检测方法和基本文本拷贝检测等方法
并且通过大量的人工评估实验发现所生成的文本具有真实性强、类型广等特点。
The text-oriented automated crowdturfing attack has a series of features such as low attack cost and strong concealment.This kind of attack can automatically generate a large number of fake reviews
with harmful effect on the healthy development of the user review community.In recent years
researchers have found that text-oriented crowdturfing attacks for the English review community
but there was few research work on automated crowdsourcing attacks in the Chinese review community.A Chinese character embedding LSTM model was proposed to automatically generate Chinese reviews with the aim of antomated crowdturfing attacks
which model trained by a combination with Chinese character embedding network
LSTM network and softmax dense network
and a temperature parameter T was designed to construct the attack model.In the experiment
more than 50 000 real user reviews were crawled from Taobao's online review platform to verify the effectiveness of the attack method.Experimental results show that the generated fake reviews can effectively fool linguistics-based classification detection approach and texts plagiarism detection approach.Besides
the massive manually evaluation experiments also demonstrate that the generated reviews with the proposed attack approach perform well in reality and diversity.
AKOGLU L , CHANDY R , FALOUTSOS C . Opinion fraud detectionin online reviews by network effects [C ] // The International AAAI Conference on Weblogs and Social Media . AAAI , 2013 : 1 - 12 .
LACKERMAIR G , KAILER D , KANMAZ K . Importance of online product reviews from a consumer's perspective [J ] . Advances in Economics and Business , 2013 , 1 ( 1 ): 1 - 5 .
金立印 . 网络口碑信息对消费者购买决策的影响:一个实验研究 [J ] . 经济管理 , 2007 ( 22 ): 36 - 42 .
JIN L Y . The impact of internet word-of-mouth information on consumers' purchase decisions:an experimental study [J ] . Economic Management , 2007 ( 22 ): 36 - 42 .
LUCA M , ZERVAS G . Fake it till you make it:reputation,competition,and yelp review fraud [J ] . Management Science , 2016 , 62 ( 12 ): 3412 - 3427 .
LIPSMAN A , . Online consumer-generated reviews have significant impact on offline purchase behavior [C ] // Industry Analysis,comScore Inc . 2007 : 2 - 8 .
JINDAL N , LIU B . Opinion spam and analysis [C ] // International Conference on Web Search and Data Mining . ACM , 2008 : 219 - 230 .
WANG G , WILSON C , ZHAO X , et al . Serf and turf:crowdturfing for fun and profit [C ] // The International Conference on World Wide Web . ACM , 2012 : 679 - 688 .
LEE K , WEBB S , GE H . Characterizing and automatically detecting crowdturfing in Fiverr and Twitter [J ] . Social Network Analysis and Mining , 2015 , 5 ( 1 ): 1 - 6 .
孟美任 , 丁晟春 . 虚假商品评论信息发布者行为动机分析 [J ] . 情报科学 , 2013 ( 10 ): 100 - 104 .
MENG M R , DING S C . Analysis of behavioral motivation of publishers of false commodity commentary information [J ] . Information Science , 2013 ( 10 ): 100 - 104 .
YAO Y , VISWANATH B , CRYAN J , et al . Automated crowdturfing attacks and defenses in online review systems [J ] . ACM , 2017 : 1143 - 1158 .
BARTOLI A , LORENZO A D , MEDVET E , et al . "Best dinner ever!!!":automatic generation of restaurant reviews with LSTM-RNN [C ] // IEEE/WIC/ACM International Conference on Web Intelligence . IEEE , 2017 : 721 - 724 .
MIKOLOV T . Statistical language models based on neural networks [M ] . Mountain View,Presentation at Google , 2012 : 2 - 80 .
WEN T H , GASIC M , MRKSIC N , et al . Semantically conditioned LSTM-based natural language generation for spoken dialogue systems [J ] . Computer Science , 2015 : 1711 - 1721 .
ZHANG Q , WANG D Y , VOELKER G M . DSpin:detecting automatically spun content on the web [C ] // The Network and Distributed System Security Symposium . 2014 : 1 - 11 .
杨钊 , 陶大鹏 , 张树业 , 等 . 大数据下的基于深度神经网的相似汉字识别 [J ] . 通信学报 , 2014 , 35 ( 9 ): 184 - 189 .
YANG Z , TAO D P , ZHANG S Y , et al . Similarity of Chinese character recognition based on deep neural network under big data [J ] . Journal on Communications , 2014 , 35 ( 9 ): 184 - 189 .
张蕾 , 章毅 . 大数据分析的无限深度神经网络方法 [J ] . 计算机研究与发展 , 2016 , 53 ( 1 ): 68 - 79 .
ZHANG L , ZHANG Y . Infinite depth neural network method for big data analysis [J ] . Journal of Computer Research and Development , 2016 , 53 ( 1 ): 68 - 79 .
MURPHY K P . Machine learning:a probabilistic perspective [J ] . MIT press , 2012 , 27 ( 2 ): 62 - 63 .
TAI Y , HE H , ZHANG W Z , et al . Automatic generation of review content in specific domain of social network based on RNN [C ] // IEEE International Conference on Data Science in Cyberspace . IEEE , 2018 : 601 - 608 .
AULI M , GALLEY M , QUIRK C , et al . Joint language and translation modeling with recurrent neural networks [C ] // The 2013 Conference on Empirical Methods in Natural Language Processing . 2013 : 1044 - 1054 .
KANNAN A , . Smart reply:automated response suggestion for email [C ] // The ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . ACM , 2016 : 955 - 964 .
KARPATHY A , FEI-FEI L . Deep visual-semantic alignments for generating image descriptions [J ] . IEEE Conference on Computer Vision and Pattern Recognition , 2015 : 3128 - 3137 .
SERBAN IV , SORDONI A , BENGIO Y , et al . Hierarchical neural network generative models for movie dialogues [J ] . Cornell University,arXiv:1507 ,04808.
SHANG L , LU Z , LI H . Neural responding machine for short-text conversation [C ] // The Annual Meeting of the Association for Computational Linguistics and The International Joint Conference on Natural Language Processing,Association for Computational Linguistics . 2015 ( 1 ): 1577 - 1586 .
SUN Y , LIN L , TANG D , et al . Radical-enhanced Chinese character embedding [J ] . Lecture Notes in Computer Science , 2014 : 279 - 286 .
Graves A . Generating Sequences With Recurrent Neural Networks [J ] . Cornell University,arXiv:1308 ,0850.
LEBRET R , GRANGIER D , AULI M . Neural text generation from structured data with application to the biography domain [C ] // The Conference on Empirical Methods in Natural Language Processing . 2016 : 1203 - 1213 .
MIKOLOV T , SUTSKEVER I , CHEN K , et al . Distributed representations of words and phrases and their compositionality [J ] . Advances in Neural Information Processing Systems , 2013 ( 26 ): 3111 - 3119 .
曾谁飞 , 张笑燕 , 杜晓峰 , 等 . 基于神经网络的文本表示模型新方法 [J ] . 通信学报 , 2017 , 38 ( 4 ): 86 - 98 .
ZENG S F , ZHANG X Y , DU X F , et al . A new method of text representation model based on neural network [J ] . Journal on Communications , 2017 , 38 ( 4 ): 86 - 98 .
WANG X , LIU Y , CHENGJIE S U , et al . Predicting polarities of tweets by composing word embeddings with long short-term memory [C ] // The Annual Meeting of The Association for Computational Linguistics,The International Joint Conference on Natural Language Processing . 2015 ( 1 ): 1343 - 1353 .
SUTSKEVER I , VINYALS O , LE Q V . Sequence to sequence learning with neural networks [J ] . In Advances in Neural Information Processing Systems , 2014 : 3104 - 3112 .
XU K , BA J , KIROS R , et al . Show,attend and tell:neural imagecaption generation with visual attention [C ] // International Conference on Machine Learning . 2015 : 2048 - 2057 .
RUSH A M , CHOPRA S , WESTON J . A neural attention model for abstractive sentence summarization [C ] // The Conference on Empirical Methods in Natural Language Processing . 2015 : 379 - 389 .
CRAWFORD M , KHOSHGOFTAAR T M , PRUSA J D , et al . Survey of review spam detection using machine learning techniques [J ] . Journal of Big Data , 2015 , 2 ( 1 ): 1 - 24 .
李璐旸 , 秦兵 , 刘挺 . 虚假评论检测研究综述 [J ] . 计算机学报 , 2018 , 41 ( 4 ): 946 - 968 .
LI W , QIN B , LIU T . A review of false comment detection research [J ] . Chinese Journal of Computers , 2018 , 41 ( 4 ): 946 - 968 .
OTT M , CHOI Y , CARDIE C , et al . Finding deceptive opinion spam by any stretch of the imagination [C ] // The Annual Meeting of the Association for Computational Linguistics:Human Language Technologies,Association for Computational Linguistics . 2011 ( 1 ): 309 - 319 .
LI J , OTT M , CARDIE C , et al . Towards a general rule for identifying deceptive opinion spam [C ] // The Annual Meeting of the Association for Computational Linguistics,Association for Computational Linguistics . 2014 ( 1 ): 1566 - 1576 .
CHEN C , CHEN J , SHI C . Research on credit evaluation model of online store based on snow NLP [C ] // In E3S Web of Conferences,EDP Sciences . 2018 ( 3 ): 3 - 39 .
HUANG C L , CHUNG C K , HUI N , et al . The development of the Chinese linguistic inquiry and word count dictionary [J ] . Chinese Journal of Psychology , 2012 , 54 ( 2 ): 185 - 201 .
GAO R , HAO B , LI H , et al . Brain and health informatics:developing simplified Chinese psychological linguistic analysis dictionary for microblog [M ] . Berlin : SpringerPress , 2013 : 359 - 368 .
SCHLEIMER S , WILKERSON D S , AIKEN A . Winnowing:local algorithms for document fingerprinting [C ] // The ACM SIGMOD International Conference on Management of Data . ACM , 2003 : 76 - 85 .
0
浏览量
1280
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构