浏览全部资源
扫码关注微信
西安建筑科技大学理学院,陕西 西安 710055
[ "王艳(1982- ),女,陕西三原人,博士,西安建筑科技大学副教授,主要研究方向为序列密码。" ]
[ "李顺波(1979- ),男,陕西周至人,博士,西安建筑科技大学副教授,主要研究方向为数字签名和序列密码。" ]
[ "薛改娜(1992- ),女,陕西渭南人,西安建筑科技大学硕士生,主要研究方向为序列密码。" ]
网络出版日期:2019-08,
纸质出版日期:2019-08-25
移动端阅览
王艳, 李顺波, 薛改娜. SLCE序列的2-adic复杂度[J]. 通信学报, 2019,40(8):151-156.
Yan WANG, Shunbo LI, Gaina XUE. 2-adic complexity of SLCE sequence[J]. Journal on communications, 2019, 40(8): 151-156.
王艳, 李顺波, 薛改娜. SLCE序列的2-adic复杂度[J]. 通信学报, 2019,40(8):151-156. DOI: 10.11959/j.issn.1000-436x.2019143.
Yan WANG, Shunbo LI, Gaina XUE. 2-adic complexity of SLCE sequence[J]. Journal on communications, 2019, 40(8): 151-156. DOI: 10.11959/j.issn.1000-436x.2019143.
针对SLCE序列的2-adic复杂度,首先利用分圆数获得此类序列的自相关函数值,根据2-adic复杂度与自相关函数的关系分析了序列2-adic复杂度取值特点,结合SLCE序列的自相关函数值与周期的最大公因子,给出了一个SLCE序列2-adic复杂度达到最大值的条件。结果表明很多有限域上的SLCE序列的2-adic复杂度可达到最大值。
Aiming at the 2-adic complexity of Sidelnikov-Lempel-Cohn-Eastman sequences
autocorrelation function value of this kind of sequence was obtained by using the cyclotomic number.Based on the relationship between 2-adic complexity and autocorrelation function
properties of 2-adic complexity value were analyzed.According to the greatest common divisor between the autocorrelation function value and the period of SLCE sequence
the condition that the 2-adic complexity of a SLCE sequence reaches its maximum value was given.The results show that 2-adic complexity of SLCE sequence on many finite field can reach the maximum value.
SIDELNIKOV V M . Some k-valued pseudo-random and nearly equidistant code [J ] . Problems of Information Transmission , 1969 , 5 ( 1 ): 16 - 22 .
LEMPEL A , COHN M , EASTMAN W L . A class of balanced binary sequences with optimal autocorrelation properties [J ] . IEEE Transactions on Information Theory , 1977 , 23 ( 1 ): 38 - 42 .
KYUREGHYAN G M , POTT A . On the linear complexity of the Sidelnikov-Lempel-Cohn-Eastman sequences [J ] . Designs Codes &Cryptography , 2003 , 49 ( 1-3 ): 149 - 164 .
HELLESETH H , KIM S H , NO J S . Linear complexity over F p and trace representation of Lembel-Cohn-Eastman sequences [J ] . IEEE Transactions on Information Theory , 2003 , 49 ( 6 ): 1548 - 1552 .
HELLESETH H , MAAS M , MATHIASSN J E , et al . Linear complexity over F p of Sidel’nikov sequences [J ] . IEEE Transactions on Information Theory , 2004 , 50 ( 10 ): 2468 - 2472 .
MEIDL W , WINTERHOF A . Some notes on the linear complexity of Sidel’nikov-Lempel-Cohn-Eastman sequences [J ] . Designs Codes &Cryptography , 2006 , 38 ( 2 ): 159 - 178 .
EUN Y C , SONG H Y , KYUREGHYAN G M . One-error linear complexity over F p of Sidelnikov sequences [C ] // International Conference on Algorithmic Applications in Management . Springer , 2004 , 154 - 165 .
GARAEV M Z , LUCA F , SHPARLINSKI I E , et al . On the lower bound of the linear complexity over F p of Sidelnikov sequences [J ] . IEEE Transactions on Information Theory , 2006 , 52 ( 7 ): 3299 - 3304 .
SU M . On the linear complexity of Legendre-Sidelnikov sequences [J ] . Designs Codes & Cryptography , 2015 , 74 ( 3 ): 703 - 717 .
SABAN A , MILLAR G . Character values of the SidelnikovLempel-Cohn-Eastman sequences [J ] . Cryptography & Communications , 2016 , 9 ( 6 ): 1 - 18 .
MYERSON G . Period polynomials and Gauss sums for finite fields [J ] . ACTA Arithmetica , 1981 , 39 ( 3 ): 251 - 264 .
KLAPPER A , GORESKY M . Feedback shift registers,2-adic span,and combiners with memory [J ] . Journal of Cryptology , 1997 , 10 ( 2 ): 111 - 147 .
TIAN T , QI W F . Adic complexity of binary-sequences [J ] . IEEE Transactions on Information Theory , 2010 , 56 ( 1 ): 450 - 454 .
XIONG H , QU L , LI C . A new method to compute the 2-adic complexity of binary sequences [J ] . IEEE Transactions on Information Theory , 2014 , 60 ( 4 ): 2399 - 2406 .
HU H G . Comments on “a new method to compute the 2-adic complexity of binary sequences” [J ] . IEEE Transactions on Information Theory , 2014 , 60 ( 9 ): 5803 - 5804 .
DING C S . Stream ciphers and number theory [M ] . Amsterdam : ElsevierPress , 2004 : 113 - 114 .
0
浏览量
789
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构