浏览全部资源
扫码关注微信
哈尔滨工程大学自动化学院,黑龙江 哈尔滨 150001
[ "王伟(1979- ),男,安徽淮北人,博士,哈尔滨工程大学教授,主要研究方向为MIMO 雷达信号处理、组合导航系统和无线电导航。" ]
[ "胡子英(1994- ),男,山东济南人,哈尔滨工程大学博士生,主要研究方向为MIMO雷达信号处理及稀疏成像技术。" ]
[ "岳佳男(1995- ),女,黑龙江哈尔滨人,哈尔滨工程大学硕士生,主要研究方向为massive MIMO下的信道估计。" ]
网络出版日期:2019-07,
纸质出版日期:2019-07-25
移动端阅览
王伟, 胡子英, 岳佳男. 高效的MIMO雷达运动目标三维成像方法[J]. 通信学报, 2019,40(7):38-47.
Wei WANG, Ziying HU, Jia’nan YUE. Efficient 3D imaging method of MIMO radar for moving target[J]. Journal on communications, 2019, 40(7): 38-47.
王伟, 胡子英, 岳佳男. 高效的MIMO雷达运动目标三维成像方法[J]. 通信学报, 2019,40(7):38-47. DOI: 10.11959/j.issn.1000-436x.2019140.
Wei WANG, Ziying HU, Jia’nan YUE. Efficient 3D imaging method of MIMO radar for moving target[J]. Journal on communications, 2019, 40(7): 38-47. DOI: 10.11959/j.issn.1000-436x.2019140.
利用压缩感知实现运动目标的稀疏成像时,运动引起的多普勒频移会增加模型维度,改变回波的中心频率,并影响测量矩阵的互相干特性。为了改善MIMO雷达对运动目标的三维成像性能,提出了一种高效的成像方法,在各维分别搜索目标的分布信息,并由该信息作为索引重构新的低维测量矩阵,借此缩小目标区域范围,同时基于测量矩阵的互相干性,应用贝叶斯方法实现多普勒维度投影矩阵的优化,降低多普勒频率采样带来的强相干性,实现高效稀疏成像。仿真结果表明,所提方法可以明显地提升运算效率,具有高效精确的成像性能。
When compressive sensing (CS) was used to achieve sparse imaging of moving targets
the Doppler frequency caused by motion will increase the processing dimension
change the center frequency of echo and worsen the mutual coherence property of measurement matrix.In order to improve the three-dimensional (3D) imaging performance of MIMO radar for moving targets
an efficient method was proposed.In each dimension
the distribution information of targets was searched respectively and a new low-dimensional measurement matrix was reconstructed accordingly
so the targets’ area was narrowed down.At the same time
in order to optimize the mutual coherence property of measurement matrix
Bayesian method was used to optimize the velocity-dimensional projection matrix to reduce the strong mutual coherence brought by sampling of Doppler frequency
then the efficient sparse imaging could be achieved.The simulation results show that proposed method can improve the efficiency
accurate imaging performance with efficient.
保铮 , 邢孟道 , 王彤 . 雷达成像技术 [M ] . 北京 : 电子工业出版社 , 2010 : 24 - 30 .
BAO Z , XING M D , WANG T . Radar imaging technology [M ] . Beijing : Publishing House of Electronics IndustryPress , 2010 : 24 - 30 .
FISHLER E , HAIMOVICH A , BLUM R . MIMO radar:an idea whose time has come [C ] // IEET International Radar Conference . IEET , 2004 : 71 - 78 .
ZHU Y , SU Y . A type of M2-transmitter N2-recevier MIMO radar array and 3D imaging theory [J ] . Science China , 2011 , 54 ( 10 ): 2147 - 2157 .
DING S , TONG N , ZHANG Y . Super-resolution 3D imaging in MIMO radar using spectrum estimation theory [J ] . IET Radar Sonar &Navigation , 2017 , 11 ( 2 ): 304 - 312 .
HU X , TONG N , SONG B . Joint sparsity-driven three-dimensional imaging method for multiple-input multiple-output radar with sparse antenna array [J ] . IET Radar Sonar & Navigation , 2017 , 11 ( 5 ): 709 - 720 .
WELCH L . Lower bounds on the maximum cross correlation of signals (Corresp) [J ] . IEEE Transaction information theory , 1974 , 20 ( 3 ): 397 - 399 .
ROBERTS W , LI J , STOICA P . MIMO radar angle-range-Doppler imaging [C ] // Radar Conference . IEEE , 2009 : 1 - 6 .
ZHANG H , LU G , YU H . Imaging of moving target for distributed MIMO radar using improved SBL technique [C ] // IEEE International Conference on Signal Processing,Communications and Computing . IEEE , 2014 : 194 - 198 .
DAI L , CUI C , YU J . Sensing matrix restriction method for compressed sensing radar [J ] . Wireless Personal Communications , 2015 , 84 ( 1 ): 605 - 621 .
HONG T , BAI H , LI S . An efficient algorithm for designing projection matrix in compressive sensing based on alternating optimization [J ] . Signal Processing , 2016 , 125 ( C ): 9 - 20 .
HONG T , ZHU Z . An efficient method for robust projection matrix design [J ] . Signal Processing , 2018 ( 143 ): 200 - 210 .
丁丽 . MIMO雷达稀疏成像的失配问题研究 [D ] . 合肥:中国科学技术大学 , 2014 .
DING L . Research on observation matrix mismatch for MIMO radar sparse imaging [D ] . Hefei:University of Science and Technology of China , 2014 .
LI B , ZHANG L , KIRUBARAJAN T . Projection matrix design using prior information in compressive sensing [J ] . Signal Processing , 2017 , 135 ( C ): 36 - 47 .
CANDÈS E , ROMBERG J . Sparsity and incoherence in compressive sampling [J ] . Inverse Problems , 2006 , 23 ( 3 ): 969 - 985 .
HU X , TONG N , WANG J . Matrix completion-based MIMO radar imaging with sparse planar array [J ] . Signal Processing , 2017 ( 131 ): 49 - 57 .
HU X , TONG N , ZHANG Y . Multiple-input multiple-output radar super-resolution three-dimensional imaging based on a dimension-reduction compressive sensing [J ] . IET Radar Sonar & Navigation , 2016 , 10 ( 4 ): 757 - 764 .
HU X , TONG N , GUO Y , et al . MIMO radar 3D imaging based on multi-dimensional sparse recovery and signal support prior information [J ] . IEEE Sensors Journal , 2018 , 18 ( 8 ): 3152 - 3162 .
张剑云 , 郑志东 , 李小波 . 双基地MIMO雷达收发角及多普勒频率的联合估计算法 [J ] . 电子与信息学报 , 2010 , 32 ( 8 ): 1843 - 1848 .
ZHANG J Y , ZHENG Z D , LI X B . An algorithm for DOD-DOA and Doppler frequency jointly estimating of bistatic MIMO radar [J ] . Journal of Electronics & Information Technology , 2010 , 32 ( 8 ): 1843 - 1848 .
符渭波 , 苏涛 , 赵永波 . 空间色噪声环境下基于时空结构的双基地MIMO 雷达角度和多普勒频率联合估计方法 [J ] . 电子与信息学报 , 2011 , 33 ( 7 ): 2858 - 2862 .
FU W B , SU T , ZHAO Y B . Joint estimation of angle and doppler frequency for bistatic MIMO radar in spatial colored noise based on temporal-spatial structure [J ] . Journal of Electronics & Information Technology , 2011 , 33 ( 7 ): 2858 - 2862 .
MA C , YEO T , TAN C . Three-dimensional imaging of targets using colocated MIMO radar [J ] . IEEE Transactions on Geoscience & Remote Sensing , 2011 , 49 ( 8 ): 3009 - 3021 .
陆新飞 . 稀疏目标的 MIMO 雷达成像技术研究 [D ] . 合肥:中国科学技术大学 , 2017 .
LU X F . Research on MIMO radar imaging for sparse distributed target [D ] . Hefei:University of Science and Technology of China , 2017 .
0
浏览量
536
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构