浏览全部资源
扫码关注微信
1. 燕山大学信息科学与工程学院,河北 秦皇岛 066004
2. 河北省特种光纤与光纤传感重点实验室,河北 秦皇岛 066004
[ "刘彬(1953- ),男,黑龙江哈尔滨人,博士,燕山大学教授、博士生导师,主要研究方向为无线传感网络、工业故障检测。" ]
[ "范瑞星(1993- ),男,河北邯郸人,燕山大学硕士生,主要研究方向为智能算法、贝叶斯网络、故障诊断。" ]
[ "刘浩然(1980- ),男,黑龙江哈尔滨人,博士,燕山大学教授、博士生导师,主要研究方向为无线传感网络、工业故障检测。" ]
[ "张力悦(1994- ),男,河北唐山人,燕山大学硕士生,主要研究方向为智能算法、贝叶斯网络、故障诊断。" ]
[ "王海羽(1993- ),男,黑龙江鹤岗人,燕山大学硕士生,主要研究方向为智能算法、贝叶斯网络、故障诊断。" ]
[ "张春兰(1992- ),女,河北衡水人,燕山大学硕士生,主要研究方向为智能算法、贝叶斯网络、故障诊断。" ]
网络出版日期:2019-07,
纸质出版日期:2019-07-25
移动端阅览
刘彬, 范瑞星, 刘浩然, 等. 基于混合樽海鞘-差分进化算法的贝叶斯网络结构学习算法[J]. 通信学报, 2019,40(7):151-161.
Bin LIU, Ruixing FAN, Haoran LIU, et al. Bayesian network structure learning algorithm based on hybrid binary salp swarm-differential evolution algorithm[J]. Journal on communications, 2019, 40(7): 151-161.
刘彬, 范瑞星, 刘浩然, 等. 基于混合樽海鞘-差分进化算法的贝叶斯网络结构学习算法[J]. 通信学报, 2019,40(7):151-161. DOI: 10.11959/j.issn.1000-436x.2019124.
Bin LIU, Ruixing FAN, Haoran LIU, et al. Bayesian network structure learning algorithm based on hybrid binary salp swarm-differential evolution algorithm[J]. Journal on communications, 2019, 40(7): 151-161. DOI: 10.11959/j.issn.1000-436x.2019124.
针对目前利用启发式算法学习贝叶斯网络结构易陷入局部最优、寻优效率低的问题,提出一种基于混合樽海鞘-差分进化算法的贝叶斯网络结构学习算法。该算法在种群划分阶段提出自适应的规模因子平衡局部搜索与全局搜索,在子种群更新阶段利用改进的变异算子与交叉算子构建樽海鞘搜索策略与差分搜索策略,更新不同的子种群,在合并子种群阶段利用两点变异算子增加种群多样性。由算法的收敛性分析可知,通过种群的迭代搜索可以找到最佳结构。实验结果表明,与其他算法相比,所提算法收敛精度与寻优效率均有提升。
Aiming at the disadvantages of Bayesian network structure learned by heuristic algorithms
which were trapping in local minimums and having low search efficiency
a method of learning Bayesian network structure based on hybrid binary slap swarm-differential evolution algorithm was proposed.An adaptive scale factor was used to balance local and global search in the swarm grouping stage.The improved mutation operator and crossover operator were taken into salp search strategy and differential search strategy respectively to renew different subswarms in the update stage.Two-point mutation operator was adopted to improve the swarm’s diversity in the stage of merging of subswarms.The convergence analysis of the proposed algorithm demonstrates that best structure can be found through the iterative search of population.Experimental results show that the convergence accuracy and efficiency of the proposed algorithm are improved compared with other algorithms.
WANG J , LIU S . Novel binary encoding water cycle algorithm for solving bayesian network structures learning problem [J ] . Knowledge-Based Systems , 2018 , 150 : 95 - 110 .
XUAN J , LU J , ZHANG G , et al . Bayesian nonparametric relational topic model through dependent Gamma processes [J ] . IEEE Transactions on Knowledge & Data Engineering , 2017 , 29 ( 7 ): 1357 - 1369 .
耿杨 , 邵苏杰 , 郭少勇 , 等 . 基于可见损伤持续时间贝叶斯网络的视频QoE评估方法 [J ] . 通信学报 , 2017 , 38 ( 6 ): 136 - 141 .
GENG Y , SHAO S J , GUO S Y , et al . Bayesian network-based video QoE assessment method using image sustained damage analysis [J ] . Journal on Communications , 2017 , 38 ( 6 ): 136 - 141 .
ALONSO J I , OSSA L D L , GÁMEZ J A , et al . On the use of local search heuristics to improve GES-based Bayesian network learning [J ] . Applied Soft Computing , 2018 , 64 : 366 - 376 .
SCANAGATTA M , CORANI G , CAMPOS C P D , et al . Approximate structure learning for large Bayesian networks [J ] . Machine Learning , 2018 , 15 : 1 - 19 .
LIU H , ZHOU S , LAM W , et al . A new hybrid method for learning bayesian networks:Separation and reunion [J ] . Knowledge-Based Systems , 2017 , 121 : 185 - 197 .
YANG C , JI J , LIU J , et al . Structural learning of Bayesian networks by bacterial foraging optimization [J ] . International Journal of Approximate Reasoning , 2016 , 69 ( C ): 147 - 167 .
TSAMARDINOS I , BROWN L E , ALIFERIS C F . The max-min hill-climbing Bayesian network structure learning algorithm [J ] . Machine Learning , 2006 , 65 ( 1 ): 31 - 78 .
刘浩然 , 孙美婷 , 李雷 , 等 . 基于蚁群节点寻优的贝叶斯网络结构算法研究 [J ] . 仪器仪表学报 , 2017 , 38 ( 1 ): 143 - 150 .
LIU H R , SUN M T , LI L , et al . Bayesian network structure algorithm based on ant colony node optimization [J ] . Chinese Journal of Scientific Instrument , 2017 , 38 ( 1 ): 143 - 150 .
CONTALDI C , VAFAEE F , NELSON P C . Bayesian network hybrid learning using an elite-guided genetic algorithm [J ] . Artificial Intelligence Review , 2018 , 293 : 1 - 28 .
SEYEDALL M , AMIR H G , SEYEDEH Z M , et al . Salp swarm algorithm:a bio-inspired optimizer for engineering design problems [J ] . Advances in Engineering Software , 2017 , 114 ( 1 ): 163 - 191 .
SAYED G I , KHORIBA G , HAGGAG M H . A novel chaotic salp swarm algorithm for global optimization and feature selection [J ] . Applied Intelligence , 2018 , 48 : 3462 - 3481
刘会宇 , 韩继红 , 袁霖 , 等 . 基于双变异策略的自适应骨架差分进化算法 [J ] . 通信学报 , 2017 , 38 ( 8 ): 201 - 212 .
LIU H Y , HAN J H , YUAN L , et al . Self-adaptive bare-bones differential evolution based on bi-mutation strategy [J ] . Journal on Communications , 2017 , 38 ( 8 ): 201 - 212 .
WANG G G , GANDOMI A H , ALAVI A H , et al . A hybrid method based on krill herd and quantum-behaved particle swarm optimization [J ] . Neural Computing and Applications , 2016 , 27 ( 4 ): 989 - 1006 .
JIAO J , VENKAT K , WEISSMAN T . Mutual information,relative entropy and estimation error in semi-martingale channels [J ] . IEEE Transactions on Information Theory , 2017 ,PP( 99 ):1.
刘浩然 , 吕晓贺 , 李轩 , 等 . 基于 Bayesian 改进算法的回转窑故障诊断模型研究 [J ] . 仪器仪表学报 , 2015 , 36 ( 7 ): 1554 - 1561 .
LIU H R , LV X H , LI X , et al . A study of fault diagnosis model of rotary kiln based on improved algorithm of Bayesian [J ] . Chinese Journal of Scientific Instrument , 2015 , 36 ( 7 ): 1554 - 1561 .
GOUDOS S . Antenna design using binary differential evolution:application to discrete-valued design problems [J ] . IEEE Antennas &Propagation Magazine , 2017 , 59 ( 1 ): 74 - 93 .
SOLIS F , WETS R . Minimization by random search technologies [J ] . Mathematics of Operations Research , 1981 , 6 : 19 - 30 .
ZAKHAROV V K , RODIONOV T V . Naturalness of the class of Lebesgue-Borel-Hausdorff measurable functions [J ] . Mathematical Notes , 2014 , 95 ( 3-4 ): 500 - 508 .
陈志敏 , 田梦楚 , 吴盘龙 , 等 . 基于蝙蝠算法的粒子滤波法研究 [J ] . 物理学报 , 2017 , 66 ( 5 ): 41 - 50 .
CHEN Z M , TIAN M C , WU P L , et al . Research on particle filtering based on bat algorithm [J ] . Journal of Physics , 2017 , 66 ( 5 ): 41 - 50 .
LIU F , ZHANG S W , GUO W F , et al . Inference of gene regulatory network based on local bayesian networks [J ] . Plos Computational Biology , 2016 , 12 ( 8 ):e1005024.
0
浏览量
736
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构