浏览全部资源
扫码关注微信
1. 南京邮电大学计算机学院,江苏 南京 210023
2. 江苏省无线传感网高技术研究重点实验室,江苏 南京 210023
[ "黄海平(1981- ),男,福建三明人,博士,南京邮电大学计算机学院教授、副院长,主要研究方向为物联网安全和数据隐私保护等。" ]
[ "王凯(1994- ),男,江苏扬州人,南京邮电大学硕士生,主要研究方向为物联网安全和数据隐私保护。" ]
[ "汤雄(1992- ),男,江苏沭阳人,南京邮电大学硕士生,主要研究方向为物联网安全和数据隐私保护。" ]
[ "张东军(1993- ),男,江苏徐州人,南京邮电大学硕士生,主要研究方向为物联网安全和数据隐私保护。" ]
网络出版日期:2019-05,
纸质出版日期:2019-05-25
移动端阅览
黄海平, 王凯, 汤雄, 等. 基于边介数模型的差分隐私保护方案[J]. 通信学报, 2019,40(5):88-97.
Haiping HUANG, Kai WANG, Xiong TANG, et al. Differential privacy protection scheme based on edge betweenness model[J]. Journal on communications, 2019, 40(5): 88-97.
黄海平, 王凯, 汤雄, 等. 基于边介数模型的差分隐私保护方案[J]. 通信学报, 2019,40(5):88-97. DOI: 10.11959/j.issn.1000-436x.2019095.
Haiping HUANG, Kai WANG, Xiong TANG, et al. Differential privacy protection scheme based on edge betweenness model[J]. Journal on communications, 2019, 40(5): 88-97. DOI: 10.11959/j.issn.1000-436x.2019095.
随着社交网络应用的不断发展,用户社交关系等个人隐私数据的安全保护问题亟待解决。为显著减小社交网络数据的敏感度,提出了一种基于边介数模型的差分隐私保护方案 BCPA。基于 dK 模型捕获图结构对应的2K 序列,根据边中介中心性系数对 2K 序列重新排序;依据排序结果将 2K 序列聚类成多个子序列,再利用 dK扰动算法对各子序列分别进行加噪;根据整合后的新 2K 序列生成满足差分隐私的社交网络发布图。基于真实数据集,通过模拟仿真将所提方案与其他经典方案进行比较,实验结果表明,所提方案在保证较强隐私保护性的同时,提高了发布数据的准确性和可用性。
With the continuous development of social network application
user’s personal social data is so sensitive that the problem of privacy protection needs to be solved urgently.In order to reduce the network data sensitivity
a differential privacy protection scheme BCPA based on edge betweenness model was proposed.The 2K sequence corresponding to the graph structure based on the dK model was captured
and 2K sequences based on the edge betweenness centrality were reordered.According to the result of reordering
the 2K sequence was grouped into several sub-sequences
and each sub-sequence was respectively added with noise by a dK perturbation algorithm.Finally
a social network graph satisfying differential privacy was generated according to the new 2K sequences after integration.Based on the real datasets
the scheme was compared with the classical schemes through simulation experiments.The results demonstrate that it improves the accuracy and usability of data while ensuring desired privacy protection level.
WANG Q , ZHANG Y , REN K , et al . Real-time and spatio-temporal crowd-sourced social network data publishing with differential privacy [J ] . IEEE Transactions on Dependable and Secure Computing , 2018 , 15 ( 4 ): 591 - 606 .
DWORK C , . Differemtial privacy [C ] // Proceedings of the 33rd International Colloquium on Automata,Language and Programming(ICALP) . 2006 : 1 - 12 .
CASAS-ROMA J , HERRERA-JOANCOMARTI J , TORRA V . k-Degree anonymity and edge selection:improving data utility in large networks [J ] . Knowledge & Information Systems , 2016 , 50 ( 2 ): 1 - 28 .
HAY M , LI C , MIKLAU G , et al . Accurate estimation of the degree distribution of private networks [C ] // Ninth IEEE International Conference on Data Mining . 2009 : 169 - 178 .
MIR D J , WRIGHT R N . A differentially private graph estimator [C ] // IEEE International Conference on Data Mining Workshops . IEEE , 2009 : 122 - 129 .
LESKOVEC J , FALOUTSOS C . Scalable modeling of real graphs using Kronecker multiplication [C ] // Machine Learning,Proceedings of the Twenty-Fourth International Conference . 2007 : 497 - 504 .
DAY W Y , LI N , MIN L . Publishing graph degree distribution with node differential privacy [C ] // ACM International Conference on Management of Data(SIGMOD) . 2016 : 123 - 138 .
SALA A , ZHAO X , Wilson C , et al . Sharing graphs using differentially private graph models [C ] // The 11th ACM SIGCOMM Internet Measurement Conference . 2011 : 81 - 98 .
WANG Y , WU X . Preserving differential privacy in degree-correlation based graph generation [J ] . Transactions on Data Privacy , 2013 , 6 ( 2 ): 127 - 145 .
兰丽辉 , 鞠时光 . 基于差分隐私的权重社会网络隐私保护 [J ] . 通信学报 , 2015 , 36 ( 9 ): 145 - 159 .
LAN L H , JU S G . Privacy preserving based on differential privacy for weighted social networks [J ] . Journal on Communications , 2015 , 36 ( 9 ): 145 - 159 .
FU Y , CHEN Z , KORU G , et al . A privacy protection technique for publishing data mining models and research data [J ] . ACM Transactions on Management Information Systems , 2010 , 1 ( 1 ): 1 - 20 .
熊文君 , 徐正全 , 王豪 . 基于滤波原理的时间序列差分隐私保护强度评估 [J ] . 通信学报 , 2017 , 38 ( 5 ): 172 - 181 .
XIONG W J , XU Z Q , WANG H . Privacy level evaluation of differential privacy for time series based on filtering theory [J ] . Journal on Communications , 2017 , 38 ( 5 ): 172 - 181 .
DWORK C , MCSHERRY F , NISSIM K , et al . Calibrating noise to sensitivity in private data analysis [C ] // The Third Theory of Cryptography Conference , 2006 : 265 - 284 .
MCSHERRY F , . Privacy integrated queries:an extensible platform for privacy-preserving data analysis [C ] // The 2009 ACM SIGMOD International Conference on Management of Data . 2009 : 19 - 30 .
JAMOUR F , SKIADOPOULOS S , KALNIS P . Parallel algorithm for incremental betweenness centrality on large graphs [J ] . IEEE Transactions on Parallel and Distributed Systems , 2018 , 29 ( 3 ): 659 - 672 .
MUHONGYA K , MAHARAJ M . Visualising and analysing online social networks [C ] // International Conference on Computing,Communication and Security(ICCCS) . 2016 : 1 - 6 .
0
浏览量
723
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构