浏览全部资源
扫码关注微信
1. 陕西师范大学计算机科学学院,陕西 西安 710119
2. 陕西师范大学数学与信息科学学院,陕西 西安 710119
3. 贵州大学贵州省公共大数据重点实验室,贵州 贵阳 550025
[ "周异辉(1981- ),女,河北蠡县人,博士,陕西师范大学讲师,主要研究方向为网络安全、大数据环境下的隐私保护和差分隐私。" ]
[ "鲁来凤(1979- ),女,安徽桐城人,博士,陕西师范大学副教授,主要研究方向为网络安全、大数据环境下的隐私保护和差分隐私。" ]
[ "吴振强(1968- ),男,陕西柞水人,博士,陕西师范大学教授、博士生导师,主要研究方向为网络数据科学、纳米网络、分布式计算、隐私保护、可信计算等。" ]
网络出版日期:2019-06,
纸质出版日期:2019-06-25
移动端阅览
周异辉, 鲁来凤, 吴振强. 随机响应机制效用优化研究[J]. 通信学报, 2019,40(6):74-81.
Yihui ZHOU, Laifeng LU, Zhenqiang WU. Study on utility optimization for randomized response mechanism[J]. Journal on communications, 2019, 40(6): 74-81.
周异辉, 鲁来凤, 吴振强. 随机响应机制效用优化研究[J]. 通信学报, 2019,40(6):74-81. DOI: 10.11959/j.issn.1000-436x.2019088.
Yihui ZHOU, Laifeng LU, Zhenqiang WU. Study on utility optimization for randomized response mechanism[J]. Journal on communications, 2019, 40(6): 74-81. DOI: 10.11959/j.issn.1000-436x.2019088.
针对本地化差分隐私中的隐私-效用均衡问题,对差分隐私和近似差分隐私情形下的二元广义随机响应机制建立效用优化模型,并采用图解法、最优性证明、软件求解和极值点等方法求解,得到了效用最优值与隐私预算、输入数据分布的精确表达式,给出了相应的效用最优机制。研究结果表明效用最优值和效用最优机制均与隐私预算和输入数据分布相关。另外,多元随机响应机制效用优化模型可通过本地化差分隐私极值点来求解。
For the study of privacy-utility trade-off in local differential privacy
the utility optimization models of binary generalized random response mechanism for the case of differential privacy and approximate differential privacy were established.By graphic method
optimality proof
software solution and extreme point method
the exact expression of the optimal utility with privacy budget and the distribution of input data was obtained
and the corresponding optimal randomized response mechanism was given.The results show that both the optimal utility and optimal mechanism are related to privacy budget and input data distribution.Moreover
the discussion for multivariate randomized response mechanism shows that the method of extreme points of local differential privacy is feasible to the solution.
DWORK C , ROTH A . Thealgorithmic foundations of differential privacy [J ] . Foundations and Trends in Theoretical Computer Science , 2014 , 9 ( 3-4 ): 211 - 407 .
TANG J , KOROLOVAA J , BAI X , et al . Privacy loss inapple’s implementation of differential privacy on MacOS 10.12 [J ] . Cornell University,arXiv Preprint ,arXiv:1709.02753 , 2017 .
ERLINGSSON Ú , PIHUR V , KOROLOVA A . RAPPOR:randomized aggregatable privacy-preserving ordinal response [C ] // The ACM SIGSAC Conference on Computer and Communications Security . ACM , 2014 : 1054 - 1067 .
WARNER S L . Randomized response:a survey technique for eliminating evasive answer bias [J ] . Journal of the American Statistical Association , 1965 , 60 ( 309 ): 63 - 69 .
COMAS J S , FERRER J D . Optimal data-independent noise for differential privacy [J ] . Information Sciences , 2013 , 250 : 200 - 214 .
GENG Q , KAIROUZ P , OH S , et al . The staircase mechanism in differential privacy [J ] . IEEE Journal of Selected Topics in Signal Processing , 2015 , 9 ( 7 ): 1176 - 1184 .
GENG Q , VISWANATH P . The optimal noise-adding mechanism in differential privacy [J ] . IEEE Transactions on Information Theory , 2016 , 62 ( 2 ): 925 - 951 .
GENG Q , VISWANATH P . Optimal noise adding mechanisms for approximate differential privacy [J ] . IEEE Transactions on Information Theory , 2016 , 62 ( 2 ): 952 - 969 .
HOLOHAN N , LEITH D J , MASON O . Optimal differentially private mechanisms for randomized response [J ] . IEEE Transactions on Information Forensics & Security , 2017 , 12 ( 11 ): 2726 - 2735 .
邓成梁 . 运筹学的原理和方法:第三版 [M ] . 武汉 : 华中科技大学出版社 , 2014 .
DENG C L . The Principle and Method of Operations Research [M ] . 3rd ed . Wuhan : Huazhong University of Science& Technology PressPress , 2014 .
KAIROUZ P , OH S , VISWANATHP . Extremal mechanisms for local differential privacy [J ] . Journal of Machine Learning Research , 2016 , 4 ( 1 ): 492 - 542 .
HOLOHAN N , LEITHD J , MASON O . Extreme points of the local differential privacy polytope [J ] . Linear Algebra and Its Applications , 2017 , 534 : 78 - 96 .
0
浏览量
697
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构