浏览全部资源
扫码关注微信
西安电子科技大学网络与信息安全学院,陕西 西安 710071
[ "王珠珠(1981- ),女,山东曹县人,西安电子科技大学博士生,主要研究方向为数据安全、人工智能安全。" ]
网络出版日期:2019-04,
纸质出版日期:2019-04-25
移动端阅览
王珠珠. 基于U型检测网络的图像篡改检测算法[J]. 通信学报, 2019,40(4):171-178.
Zhuzhu WANG. Image forgery detection algorithm based on U-shaped detection network[J]. Journal on communications, 2019, 40(4): 171-178.
王珠珠. 基于U型检测网络的图像篡改检测算法[J]. 通信学报, 2019,40(4):171-178. DOI: 10.11959/j.issn.1000-436x.2019086.
Zhuzhu WANG. Image forgery detection algorithm based on U-shaped detection network[J]. Journal on communications, 2019, 40(4): 171-178. DOI: 10.11959/j.issn.1000-436x.2019086.
针对图像篡改检测算法依赖单一图像属性、适用度不高以及当前基于深度学习的检测算法时间复杂度过高、精度较低等缺陷,提出了一种基于U型检测网络的图像篡改检测算法。该算法首先利用连续的卷积层和最大池化层提取图像中多阶段的特征信息,然后将得到的特征信息通过上采样操作恢复至输入图像的分辨率大小。同时,为保证在提取图像高级语义信息的同时实现更高的检测精度,U型检测网络中各阶段的输出特征会和对应的通过上采样层的输出特征进行合并。U型检测网络在一般网络展现出来的特性上,进一步探究了图像中篡改与非篡改区域间的隐藏特征信息,利用其端到端的网络结构和提取图像上下文间较强关联信息的属性,可以实现快速且高精度的检测效果。最后利用全连接条件随机场对U型检测网络的输出结果进行优化,以获得更精细的检测效果。实验结果表明,所提算法效果优于传统的基于图像单一属性的篡改检测算法和当前基于深度学习的检测算法,并且具有较好的顽健性。
Aiming at the defects of traditional image tampering detection algorithm relying on single image attribute
low applicability and current high time-complexity detection algorithm based on deep learning
an U-shaped detection network image forgery detection algorithm was proposed.Firstly
the multi-stage feature information in the image by using the continuous convolution layers and the max-pooling layers was extracted by U-shaped detection network
and then the obtained feature information to the resolution of the input image through the upsampling operation was restored.At the same time
in order to ensure higher detection accuracy while extracting high-level semantic information of the image
the output features of each stage in U-shaped detection network would be merged with the corresponding output features through the upsampling layer.Further the hidden feature information between tampered and un-tampered regions in the image upon the characteristics of the general network was explored by U-shaped detection network
which could be realized quickly by using its end-to-end network structure and extracting the attributes of strong correlation information among image contexts that could ensure high-precision detection results.Finally
the conditional random field was used to optimize the output of the U-shaped detection network to obtain a more exact detection results.The experimental results show that the proposed algorithm outperforms those traditional forgery detection algorithms based on single image attribute and the current deep learning-based detection algorithm
and has good robustness.
CHEN W , SHI Y Q , SU W . Image splicing detection using 2-D phase congruency and statistical moments of characteristic function [C ] // Security,Steganography,& Watermarking of Multimedia Contents IX.International Society for Optics and Photonics . 2007 , 6505 :65050R.
WANG W , DONG J , TAN T . Effective image splicing detection based on image chroma [C ] // IEEE International Conference on Image Processing . IEEE , 2009 : 1257 - 1260 .
ZHAO X , LI J , LI S , et al . Detecting digital image splicing in chroma spaces [J ] . Lecture Notes in Computer Science , 2010 , 6526 : 12 - 22 .
GOU H , SWAMINATHAN A , WU M . Noise features for image tampering detection and steganalysis [C ] // IEEE International Conference on Image Processing . IEEE , 2007 6 : VI - 97 .
HSU Y F , CHANG S F . Detecting image splicing using geometry invariants and camera characteristics consistency [C ] // IEEE International Conference on Multimedia & Expo . IEEE , 2006 : 549 - 552 .
MAHDIAN B , SAIC S . Detection of resampling supplemented with noise inconsistencies analysis for image forensics [C ] // International Conference on Computational Sciences and its Applications . 2008 : 546 - 556 .
JOHNSON M K , FARID H . Exposing digital forgeries through specular highlights on the eye [C ] // Information Hiding,Lecture Notes in Computer Science . Springer , 2007 : 311 - 325 .
JOHNSON M K , FARID H . Exposing digital forgeries in complex lighting environments [J ] . IEEE Transactions on Information Forensics and Security , 2007 , 2 ( 3 ): 450 - 461 .
YE S , SUN Q , CHANG E C . Detecting digital image forgeries by measuring inconsistencies of blocking artifact [C ] // IEEE International Conference on Multimedia & Expo . IEEE , 2007 : 12 - 15 .
LIN Z , HE J , TANG X , et al . Fast,automatic and fine-grained tampered JPEG image detection via DCT coefficient analysis [J ] . Pattern Recognition , 2009 , 42 ( 11 ): 2492 - 2501 .
LUO W , HUANG J , QIU G . JPEG error analysis and its applications to digital image forensics [J ] . IEEE Transactions on Information Forensics and Security , 2010 , 5 ( 3 ): 480 - 491 .
BIANCHI T , DE ROSA A , PIVA A . Improved DCT coefficient analysis for forgery localization in JPEG images [C ] // IEEE International Conference on Acoustics . IEEE , 2011 : 2444 - 2447 .
ZHAO Y , WANG S , ZHANG X , et al . Robust hashing for image authentication using zernike moments and local features [J ] . IEEE Transactions on Information Forensics and Security , 2013 , 8 ( 1 ): 55 - 63 .
WANG X , PANG K , ZHOU X , et al . A visual model-based perceptual image hash for content authentication [J ] . IEEE Transactions on Information Forensics and Security , 2015 , 10 ( 7 ): 1336 - 1349 .
TANG Z , ZHANG X , LI X , et al . Robust image hashing with ring partition and invariant vector distance [J ] . IEEE Transactions on Information Forensics and Security , 2015 , 11 ( 1 ): 200 - 214 .
YAN C P , PUN C M , YUAN X C . Quaternion-based image hashing for adaptive tampering localization [J ] . IEEE Transactions on Information Forensics and Security , 2016 , 12 ( 9 ): 2144 - 2158 .
RAO Y , NI J . A deep learning approach to detection of splicing and copy-move forgeries in images [C ] // IEEE International Workshop on Information Forensics & Security . IEEE , 2017 : 1 - 6 .
ZHANG Y , WIN L L , GOH J , et al . Image region forgery detection:a deep learning approach [C ] // The Singapore Cyber-Security Conference (SG-CRC) . 2016 : 1 - 11 .
BAPPY J H , ROYCHOWDHURY A K , BUNK J , et al . Exploiting spatial structure for localizing manipulated image regions [C ] // IEEE International Conference on Computer Vision . IEEE Computer Society , 2017 : 4970 - 4979 .
YANG W , BI X L , XIAO B . C2R net:the coarse to refined network for image forgery detection [C ] // The International Conference on Big Data Science and Engineering . IEEE , 2018 : 1656 - 1659 .
RONNEBERGER O , FISCHER P , BROX T . U-Net:convolutional networks for biomedical image segmentation [C ] // International Conference on Medical Image Computing & Computer-assisted Intervention . IEEE , 2015 : 234 - 241 .
KR H H , KOLTUN V . Efficient inference in fully connected CRFs with Gaussian edge potentials [C ] // Conference and Workshop on Neural Information Processing Systems . 2012 : 109 - 117 .
IOFFE S , SZEGEDY C . Batch normalization:accelerating deep network training by reducing internal covariate shift [J ] . arXiv:1502.03167 ,
LIN T Y , GOYAL P , GIRSHICK R , et al . Focal loss for dense object detection [C ] // The IEEE International Conference on Computer Vision . 2017 : 2980 - 2988 .
SHORE J , JOHNSON R . Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy [J ] . IEEE Transactions on Information Theory , 1980 , 26 ( 1 ): 26 - 37 .
CASIA . CASIA tampered image detection evaluation database(TIDE):v2.0 [S ] . Institute of Automation,Chinese Academy of Sciences , 2015 .
LI W , YUAN Y , YU N . Passive detection of doctored JPEG image via block artifact grid extraction [J ] . Signal Processing , 2009 , 89 ( 9 ): 1821 - 1829 .
FARID H . Exposing digital forgeries from JPEG ghosts [J ] . IEEE Transactions on Information Forensics & Security , 2009 , 4 ( 1 ): 154 - 160 .
DIRIK A E , MEMON N D . Image tamper detection based on demosaicing artifacts [C ] // The International Conference on Image Processing . IEEE , 2009 : 1497 - 1500 .
BIANCHI T , PIVA A . Image forgery localization via block-grained analysis of JPEG artifacts [J ] . IEEE Transactions on Information Forensics & Security , 2012 , 7 ( 3 ): 1003 - 1017 .
ZAMPOGLOU M , PAPADOPOULOS S , KOMPATSIARIS Y . Large-scale evaluation of splicing localization algorithms for web images [J ] . Multimedia Tools & Applications , 2017 , 76 ( 1 ): 1 - 34 .
0
浏览量
1769
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构