浏览全部资源
扫码关注微信
1. 西北大学信息科学与技术学院,陕西 西安 710127
2. 池州学院数学与计算机学院,安徽 池州 247000
[ "殷晓玲(1975- ),女,安徽枞阳人,池州学院副教授,主要研究方向为云计算、信息安全、机器学习。" ]
[ "陈晓江(1972- ),男,陕西西安人,博士,西北大学教授、博士生导师,主要研究方向为无线传感器网络定位、网络安全、软件体系结构。" ]
[ "夏启寿(1975- ),男,安徽庐江人,池州学院副教授,主要研究方向为云计算、信息安全、机器学习。" ]
[ "何娟(1994- ),女,江西萍乡人,西北大学硕士生,主要研究方向为无线传感器网络定位。" ]
[ "张鹏艳(1990- )女,陕西西安人,西北大学硕士生,主要研究方向为无线传感器网络定位。" ]
[ "陈峰(1978- ),男,安徽天长人,博士,西北大学助理研究员,主要研究方向为无线网络。" ]
网络出版日期:2019-03,
纸质出版日期:2019-03-25
移动端阅览
殷晓玲, 陈晓江, 夏启寿, 等. 基于智能手机内置传感器的人体运动状态识别[J]. 通信学报, 2019,40(3):157-169.
Xiaoling YIN, Xiaojiang CHEN, Qishou XIA, et al. Human motion state recognition based on smart phone built-in sensor[J]. Journal on communications, 2019, 40(3): 157-169.
殷晓玲, 陈晓江, 夏启寿, 等. 基于智能手机内置传感器的人体运动状态识别[J]. 通信学报, 2019,40(3):157-169. DOI: 10.11959/j.issn.1000-436x.2019057.
Xiaoling YIN, Xiaojiang CHEN, Qishou XIA, et al. Human motion state recognition based on smart phone built-in sensor[J]. Journal on communications, 2019, 40(3): 157-169. DOI: 10.11959/j.issn.1000-436x.2019057.
针对目前智能手机识别人体运动状态种类少、准确率低的问题,提出一种利用加速度传感器和重力传感器分层识别人体运动状态的方案。首先,利用加速度和重力加速度的关系计算出与手机方向无关的惯性坐标系下的线性加速度;其次,根据人体运动频率的变化范围和线性加速度矢量来确定脚步的波峰和波谷位置;最后,提取线性加速度在时域上的特征向量,使用层次支持向量机方法分层识别人体运动状态。实验结果表明,该方法能有效识别人体6种日常运动状态,准确率达到93.37%。
To solve problems of low accuracy and fewer types of human motion state recognized by current smart phones
a method to do hierarchical recognition by using acceleration sensors and gravity sensors was proposed.Firstly
linear acceleration in inertial coordinate system and independent of phone direction was calculated by using the relation between acceleration and gravity acceleration.Secondly
according to the span of human motion frequency and linear acceleration vector
positions of peak and trough of footsteps were determined.Finally
feature vector of linear acceleration in time domain was extracted and human motion states were recognized hierarchically by using hierarchical support vector machine (H-SVM).The experiment shows the method can recognize six usual human motion states
while accuracy rate up to 93.37%.
HENPRASERTTAE A , THIEMJARUS S , MARUKATAT S . Accurate activity recognition using a mobile phone regardless of device orientation and location [C ] // International Conference on Body Sensor Networks . IEEE Computer Society , 2011 : 41 - 46 .
SHOAIB M , BOSCH S , INCEL O D , et al . Fusion of smartphone motion sensors for physical activity recognition [J ] . Sensors , 2014 , 14 ( 6 ): 10146 - 10176 .
GUO H , CHEN L , CHEN G , et al . Smartphone‐based activity recog-nition independent of device orientation and placement [J ] . Interna-tional Journal of Communication Systems , 2016 , 29 ( 16 ): 2403 - 2415 .
THIEMJARUS S , HENPRASERTTAE A , MARUKATAT S . A study on instance-based learning with reduced training prototypes for device-context-independent activity recognition on a mobile phone [C ] // IEEE International Conference on Body Sensor Networks . IEEE , 2013 : 1 - 6 .
USTEV Y E , INCEL O D , ERSOY C . User,device and orientation independent human activity recognition on mobile phones:challenges and a proposal [C ] // ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication . ACM , 2013 : 1427 - 1436 .
LU H , YANG J , LIU Z , et al . The Jigsaw continuous sensing engine for mobile phone applications [C ] // ACM Conference on Embedded Networked Sensor Systems . ACM , 2010 : 71 - 84 .
FIGO D , DINIZ P C , FERREIRA D R , et al . Preprocessing techniques for context recognition from accelerometer data [J ] . Personal & Ubiquitous Computing , 2010 , 14 ( 7 ): 645 - 662 .
CAMHI S M , SISSON S B , JOHNSON W D , et al . Accelerometer-determined moderate intensity lifestyle activity and cardiometabolic health [J ] . Preventive Medicine , 2011 , 52 ( 5 ): 358 - 360 .
MIZELL D , . Using gravity to estimate accelerometer orientation [C ] // IEEE International Symposium on Wearable Computers . IEEE , 2005 : 252 - 253 .
GUO H , CHEN L , CHEN G , et al . Smartphone‐based activity recog-nition independent of device orientation and placement [J ] . Interna-tional Journal of Communication Systems , 2016 , 29 ( 16 ): 2403 - 2415 .
李锋 , 潘敬奎 . 基于三轴加速度传感器的人体运动识别 [J ] . 计算机研究与发展 , 2016 , 53 ( 3 ): 621 - 631 .
LI F , P J K . Human motion recognition based on triaxial accelerome-ter [J ] . Journal of Computer Research and Development , 2016 , 53 ( 3 ): 621 - 631 .
CHEN Z , ZHU Q , CHAI S Y , et al . Robust human activity recognition using smartphone sensors via CT-PCA and online SVM [J ] . IEEE Transactions on Industrial Informatics , 2017 ,PP( 99 ): 1 - 1 .
李若涵 , 张金艺 , 徐德政 , 等 . 运动分类步频调节的微机电惯性测量单元室内行人航迹推算 [J ] . 上海大学学报(自然科学版) , 2014 , 20 ( 5 ): 612 - 623 .
LI R H , ZHANG J Y , XU D Z , et al . Micro-electro-mechanical sys-tem-inertial measurement unit indoor pedestrian dead reckoning based on motion classification and step frequency adjustment [J ] . Journal of Shanghai University(Natural Science) , 2014 , 20 ( 5 ): 612 - 623 .
RAVI N , DANDEKAR N , MYSORE P , et al . Activity recognition from accelerometer data [C ] // The Twentieth National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference . DBLP , 2005 : 1541 - 1546 .
KASTEREN T V , NOULAS A , ENGLEBIENNE G . Accurate activityrecognition in a home setting [C ] // International Conference on Ubiquitous Computing . ACM , 2008 : 1 - 9 .
CASALE P , PUJOL O , RADEVA P . Human activity recognition from accelerometer data using a wearable device [M ] // Pattern Recognition and Image Analysis . Springer Berlin Heidelberg , 2011 : 289 - 296 .
EMMANUEL M T . Using machine learning for real-time activity recognition and estimation of energy expenditure [D ] . Bosto :Massachusetts Institute of Technology , 2008 : 50 - 57 .
KHAN A M , LEE Y K , LEE S Y , et al . A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer [J ] . IEEE Transactions on Information Technology in Biomedicine A Publication of the IEEE Engineering in Medicine &Biology Society , 2010 , 14 ( 5 ): 1166 - 1172 .
KWAPISZ J R , WEISS G M , MOORE S A . Activity recognition using cell phone accelerometers [J ] . ACM SIGKDD Explorations Newsletter , 2011 , 12 ( 2 ): 74 - 82 .
SIIRTOLA P , JUHA RÖNING . Recognizing human activities user-independently on smartphones based on accelerometer data [J ] . International Journal of Interactive Multimedia & Artificial Intelligence , 2012 , 1 ( 5 ): 38 - 45 .
HE Y , LI Y , BAO S D . Fall detection by built-in tri-accelerometer of smartphone [C ] // IEEE-EMBS International Conference on Biomedical and Health Informatics . IEEE , 2012 : 184 - 187 .
USTEV Y E , DURMAZ INCEL O , ERSOY C . User,device and orientation independent human activity recognition on mobile phones:challenges and a proposal [C ] . The 2013 ACM Conference On Pervasive And Ubiquitous Computing Adjunct Publication . ACM , 2013 : 1427 - 1436 .
MITCHELL E , MONAGHAN D , O'CONNOR N E . Classification of sporting activities using smartphone accelerometers [J ] . Sensors , 2013 , 13 ( 4 ): 5317 - 5337 .
KHAN A M , SIDDIQI M H , LEE S W . Exploratory data analysis of acceleration signals to select light-weight and accurate features for real-time activity recognition on smartphones [J ] . Sensors , 2013 , 13 ( 10 ): 99 - 122 .
ZHANG L , WU X , LUO D . Improving activity recognition with context information [C ] // IEEE International Conference on Mechatronics and Automation . IEEE , 2015 : 1241 - 1246 .
WANG A , CHEN G , YANG J , et al . A comparative study on human activity recognition using inertial sensors in a smartphone [J ] . IEEE Sensors Journal , 2016 , 16 ( 11 ): 4566 - 4578 .
SHOAIB M , BOSCH S , INCEL O D , et al . Complex activity recognition using smartphone and wrist-worn motion sensors [J ] . Sensors , 2016 , 16 ( 4 ):426.
JONGPRASITHPORN M , YODPIJIT N , SRIVILAI R , et al . A smartphone-based real-time simple activity recognition [C ] // International Conference on Control,Automation and Robotics . IEEE , 2017 : 539 - 542 .
CHEN Y , SHEN C . Performance Analysis of Smartphone-Sensor Behavior for Human Activity Recognition [J ] . IEEE Access , 2017 , 5 ( 99 ): 3095 - 3110 .
彭际群 . 基于加速度传感器的人体运动状态识别研究 [D ] . 哈尔滨:哈尔滨工业大学 , 2014 .
PENG J Q . The research of human activity state recognition base on accelerometers [D ] . Harbin :Harbin Institute of Technology , 2014
GLUECK M , BUHMANN A , MANOLI Y . Autocalibration of MEMSaccelerometers [C ] // Instrumentation and Measurement Technology Conference . IEEE , 2012 : 1788 - 1793 .
陆欣 , 刘忠 , 张宏欣 , 等 . 三轴MEMS加速度计的最大似然校正算法 [J ] . 国防科技大学学报 , 2017 , 39 ( 5 ): 185 - 191 .
LU X , LIU ZH , ZHANG H X , et al . Maximum likelihood calibration for MEMS triaxial accelerometer [J ] . Journal of National University of Defense Technology , 39 ( 5 ): 185 - 191 .
杨管金子 , 李建辰 , 黄海 , 等 . 基于遗传算法的加速度计免转台标定方法 [J ] . 中国惯性技术学报 , 2017 , 25 ( 1 ): 119 - 123 .
YANG G J Z , LI J C , HUANG H , et al . Non-turntable calibration method for three-accelerometer based on genetic algorithm [J ] . Journal of Chinese Inertial Technology , 2017 , 25 ( 1 ): 119 - 123 .
毛友泽 , 张海 . 无依托状态加速度计的新型标定方法 [J ] . 北京航空航天大学学报 , 2011 , 37 ( 1 ): 123 - 126 .
MAO Y Z , ZHANG H . Novel Calibration method for accelerometers of in-field use [J ] . Journal of Beijing University of Aeronautics and As-tronautics , 2011 , 37 ( 1 ): 123 - 126 .
桂毅 , . 基于高斯牛顿迭代法的 MEMS 加速度计标定方法 [C ] // 2016 IEEE Chinese Guidance,Navigation and Control Conference . 2016 : 3032 - 3036 .
GUI Y , . Calibration of MEMS accelerometer based on gauss-newton iteration algorithm [C ] // 2016 IEEE Chinese Guidance,Navigation and Control Conference . 2016 : 3032 - 3036 .
戴邵武 , 王克红 , 庆曾宏 . 基于混合 PSO 算法的加速度计快速标定方法 [J ] . 压电与声光 , 2015 , 37 ( 2 ): 232 - 236 .
DAI S W , WANG K H , Qing Z H . Rapid calibration of accelerometer based on hybrid particle swarm optimization algorithm [J ] . Piezoelectrics & Acoustooptics , 2015 , 37 ( 2 ): 232 - 236 .
KRISHNAN N C , COOK D J . Activity recognition on streaming sensor data [J ] . Pervasive & Mobile Computing , 2014 , 10 ( Pt B ): 138 - 154 .
BANOS O , GALVEZ J M , DAMAS M , et al . Window size impact in human activity recognition [J ] . Sensors , 2014 , 14 ( 4 ): 6474 - 6499 .
ROBNIK , IKONJA M , KONONENKO I . Theoretical and empirical analysis of ReliefF and RReliefF [J ] . Machine Learning , 2003 , 53 ( 1-2 ): 23 - 69 .
LIU J , CHEN R , LING P , et al . A hybrid smartphone indoor positioning solution for mobile LBS [J ] . Sensors , 2012 , 12 ( 12 ): 17208 - 17233 .
梁久祯 , 朱向军 , 陈璟 . 基于手机加速度传感器的高精低采样计步算法设计 [J ] . 西北大学学报(自然科学版) , 2015 , 45 ( 5 ): 738 - 744 .
LIANG J ZH , ZHU X J , CHEN J . A high-accuracy and low-sampling-rate step counting algorithm design based on smartphone’s accelerometer [J ] . Journal of Northwest Universi-ty(Natural Science Edition) , 2015 , 45 ( 5 ): 738 - 744 .
凌海波 , 杨 静 , 周先存 . 基于手机加速度传感器的波峰波谷计步算法研究 [J ] . 四川理工学院学报(自然科学版) , 2017 , 30 ( 3 ): 21 - 25 .
LING H B , YANG J , ZHOU X C . Research on peak and trough step counting algorithm based on mobile accelerometer [J ] . Journal of Si-chuan University of Science & Engineering(Natural Science Edi-tion) , 2017 , 30 ( 3 ): 21 - 25 .
FIGO D , DINIZ P C , FERREIRA D R , et al . Preprocessing techniques for context recognition from accelerometer data [J ] . Personal & Ubiquitous Computing , 2010 , 14 ( 7 ): 645 - 662 .
ANGUITA D , GHIO A , ONETO L , et al . Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine [C ] // International Conference on Ambient Assisted Living and Home Care . Springer-Verlag , 2012 : 216 - 223 .
0
浏览量
2436
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构