浏览全部资源
扫码关注微信
南京邮电大学通信与信息工程学院,江苏 南京 210003
[ "桂冠(1982- ),男,安徽枞阳人,博士,南京邮电大学教授,主要研究方向为基于深度学习的物理层无线通信技术。" ]
[ "王禹(1996- ),男,江苏东台人,南京邮电大学博士生,主要研究方向为基于深度学习的物理层无线通信技术。" ]
[ "黄浩(1995- ),男,江苏海安人,南京邮电大学博士生,主要研究方向为基于深度学习的物理层无线通信技术。" ]
网络出版日期:2019-02,
纸质出版日期:2019-02-25
移动端阅览
桂冠, 王禹, 黄浩. 基于深度学习的物理层无线通信技术:机遇与挑战[J]. 通信学报, 2019,40(2):19-23.
Guan GUI, Yu WANG, Hao HUANG. Deep learning based physical layer wireless communication techniques:opportunities and challenges[J]. Journal on communications, 2019, 40(2): 19-23.
桂冠, 王禹, 黄浩. 基于深度学习的物理层无线通信技术:机遇与挑战[J]. 通信学报, 2019,40(2):19-23. DOI: 10.11959/j.issn.1000-436x.2019043.
Guan GUI, Yu WANG, Hao HUANG. Deep learning based physical layer wireless communication techniques:opportunities and challenges[J]. Journal on communications, 2019, 40(2): 19-23. DOI: 10.11959/j.issn.1000-436x.2019043.
对无线通信系统的高可靠性与超高容量需求促进了第五代移动通信(5G)的发展,然而,随着通信系统的日益复杂,现有的物理层无线通信技术难以满足这些高的性能需求。目前,深度学习被认为是处理物理层通信的有效工具之一,基于此,主要探讨了深度学习在物理层无线通信中的潜在应用,并且证明了其卓越性能。最后,提出几个可能发展的基于深度学习的物理层无线通信技术。
The development of the fifth-generation wireless communications (5G) system is promoted by the high requirements of the high reliability and super-high network capacity.However
existing communication techniques are hard to achieve the high requirements due to the more and more complexity design in 5G system.Currently
deep learning is considered one of effective tools to handle the physical layer wireless communications.Several potential applications based on deep learning were reviewed
and their effectiveness were confirmed.Finally
several potential techniques in deep learning based physical layer wireless communications were pointed out.
尤肖虎 , 张川 , 谈晓思 , 等 . 基于 AI 的 5G 技术——研究方向与范例 [J ] . 中国科学:信息科学 , 2018 , 48 ( 12 ): 1589 - 1602 .
YOU X H , ZHANG C , TAN X S , et al . AI for 5G:research directions and paradigms [J ] . Science China , 2018 , 48 ( 12 ): 1589 - 1602 .
张静 , 金石 , 温朝凯 , 等 . 基于人工智能的无线传输技术最新研究进展 [J ] . 电信科学 , 2018 , 34 ( 08 ): 46 - 55 .
ZHANG J , JIN S , WEN C K , et al . An overview of wireless transmission technology utilizing artificial intelligence [J ] . Telecommunications Science , 2018 , 34 ( 8 ): 46 - 55 .
O’SHEA T J , HOYDIS J . An introduction to deep learning for the physical layer [J ] . IEEE Transactions on Cognitive Communications and Networking , 2017 , 3 ( 4 ): 563 - 575 .
YE H , LI G Y , JUANG B H . Power of deep learning for channel estimation and signal detection in OFDM systems [J ] . IEEE Wireless Communications Letters , 2018 , 7 ( 1 ): 114 - 117 .
BORGERDING M , SCHNITER P , RANGAN S . AMP-inspired deep networks for sparse linear inverse problems [J ] . IEEE Transactions on Signal Processing , 2017 , 65 ( 16 ): 4293 - 4308 .
GUI G , HUANG H , SONG Y , et al . Deep learning for an effective non-orthogonal multiple access scheme [J ] . IEEE Transactions on Vehicular Technology , 2018 , 67 ( 9 ): 8440 - 8450 .
HUANG H , YANG J , SONG Y , et al . Deep learning for super-resolution channel estimation and DOA estimation based massive MIMO system [J ] . IEEE Transactions on Vehicular Technology , 2018 , 67 ( 9 ): 8549 - 8560 .
HUANG H , GUI G , SARI H , et al . Deep learning for super- resolution DOA estimation in massive MIMO systems [C ] // IEEE 88th Vehicular Technology Conference (VTC Fall) , 2018 : 1 - 6 .
HUANG H , SONG Y , YANG J , et al . Deep-learning-based millimeter-wave massive MIMO for hybrid precoding [J ] . IEEE Transactions on Vehicular Technology , 2019 ,PP( 99 ):1.
ADHIKARY J , NAM , AHN J Y , et al . Joint spatial division and multiplexing—the large-scale array regime [J ] . IEEE Transactions on Information Theory , 2013 , 59 ( 10 ): 6441 - 6463 .
戈腾飞 , 徐友云 , 杨震 . 基于波束域降维的低复杂度大规模 MIMO波束成形方法 [J ] . 南京邮电大学学报(自然科学版) , 2018 , 38 ( 1 ): 66 - 70 .
GE T F , XU Y Y , YANG Z . Low complexity beamforming for massive MIMO systems by beam domain dimension reduction [J ] . Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition) , 2018 , 38 ( 1 ): 66 - 70 .
0
浏览量
4659
下载量
17
CSCD
关联资源
相关文章
相关作者
相关机构