浏览全部资源
扫码关注微信
海军航空大学信号与信息处理山东省重点实验室,山东 烟台 264001
[ "董道广(1990- ),男,山东济南人,海军航空大学博士生,主要研究方向为Bayesian统计学习、压缩感知和蒸发波导反演。" ]
[ "芮国胜(1968- ),男,山东烟台人,博士,海军航空大学教授、博士生导师,主要研究方向为混沌通信系统及现代滤波理论。" ]
[ "田文飚(1987- ),男,江西南昌人,博士,海军航空大学副教授,主要研究方向为压缩感知、蒸发波导反演。" ]
[ "康健(1971- ),女,黑龙江哈尔滨人,博士,海军航空大学副教授,主要研究方向为信号处理及现代滤波理论。" ]
[ "刘歌(1991- ),女,山东威海人,海军航空大学博士生,主要研究方向为压缩感知、蒸发波导反演。" ]
网络出版日期:2019-01,
纸质出版日期:2019-01-25
移动端阅览
董道广, 芮国胜, 田文飚, 等. 基于结构相似性的非参数贝叶斯字典学习算法[J]. 通信学报, 2019,40(1):43-50.
Daoguang DONG, Guosheng RUI, Wenbiao TIAN, et al. Nonparametric Bayesian dictionary learning algorithm based on structural similarity[J]. Journal on communications, 2019, 40(1): 43-50.
董道广, 芮国胜, 田文飚, 等. 基于结构相似性的非参数贝叶斯字典学习算法[J]. 通信学报, 2019,40(1):43-50. DOI: 10.11959/j.issn.1000-436x.2019015.
Daoguang DONG, Guosheng RUI, Wenbiao TIAN, et al. Nonparametric Bayesian dictionary learning algorithm based on structural similarity[J]. Journal on communications, 2019, 40(1): 43-50. DOI: 10.11959/j.issn.1000-436x.2019015.
相较于传统综合字典学习方法,非参数贝叶斯方法具有显著优势,但其对图像结构全局相似性和变异性的表示能力仍有较大提升空间。针对这个问题,提出了一种基于结构相似性的非参数贝叶斯字典学习算法,该算法基于图像结构的全局相似性对图像进行聚类处理,并在图像的字典稀疏表示中引入块结构特性,提升了字典的结构表示能力。实验表明,所提算法在图像去噪和压缩感知方面的性能均优于目前主流的几种无监督字典学习算法。
Though nonparametric Bayesian methods possesses significant superiority with respect to traditional comprehensive dictionary learning methods
there is room for improvement of this method as it needs more consideration over the structural similarity and variability of images.To solve this problem
a nonparametric Bayesian dictionary learning algorithm based on structural similarity was proposed.The algorithm improved the structural representing ability of dictionaries by clustering images according to their non-local structural similarity and introducing block structure into sparse representing of images.Denoising and compressed sensing experiments showed that the proposed algorithm performs better than several current popular unsupervised dictionary learning algorithms.
FEDOROV I , RAO B D , NGUYEN T Q . Multimodal sparse Bayesian dictionary learning applied to multimodal data classification [C ] // IEEE International Conference on Acoustics . 2017 : 2237 - 2241 .
HUANG Y , PAISLEY J , LIN Q , et al . Bayesian nonparametric dictionary learning for compressed sensing MRI [J ] . IEEE Transactions on Image Processing , 2014 , 23 ( 12 ): 5007 - 5019 .
LI S , TAO X , LU J . Variational Bayesian inference for nonparametric signal compressive sensing on structured manifolds [C ] // IEEE International Conference on Communications . 2017 : 1 - 6 .
LI Z , HUANG H , MISRA S . Compressed sensing via dictionary learning and approximate message passing for multimedia Internet of things [J ] . IEEE Internet of Things Journal , 2017 , 4 ( 2 ): 505 - 512 .
HUANG Y , PAISLEY J , LIN Q , et al . Bayesian nonparametric dictionary learning for compressed sensing MRI [J ] . IEEE Transactions on Image Processing , 2014 , 23 ( 12 ): 5007 - 5019 .
HONG P D , CHAINAIS P . A Bayesian non-parametric approach to learn dictionaries with adapted numbers of atoms [C ] // IEEE International Workshop on Machine Learning for Signal Processing . 2015 : 1 - 6 .
ZHOU M , CHEN H , PAISLEY J , et al . Nonparametric Bayesian dictionary learning for analysis of noisy and incomplete images [J ] . IEEE Transactions on Image Processing , 2012 , 21 ( 1 ): 130 - 144 .
LIU Z , YU L , ZHANG M , et al . Nonlocal structured nonparametric Bayesian dictionary learning for image denoising [C ] // IEEE International Conference on Signal Processing . 2017 : 144 - 148 .
ZHOU M , YANG H , SAPIRO G , et al . Dependent hierarchical beta process for image interpolation and denoising [J ] . Aistats , 2012 , 15 : 883 - 891 .
PAISLEY J , ZHOU M , SAPIRO G , et al . Nonparametric image interpolation and dictionary learning using spatially-dependent dirichlet and beta process priors [C ] // IEEE International Conference on Image Processing . 2010 : 1869 - 1872 .
ZHOU M , CHEN H , PAISLEY J , et al . Non-parametric Bayesian dictionary learning for sparse image representations [C ] // International Conference on Neural Information Processing Systems . 2009 , 21 ( 1 ): 2295 - 2303 .
ZHOU G , ZHU D , WANG K , et al . Wavelet image inpainting based on dictionary learning with a Beta process [C ] // Proceedings of 2010 Conference on Dependable Computing . 2010 : 83 - 88 .
ZHU L , HUANG Z , LIU Y , et al . The nonparametric Bayesian dictionary learning based interpolation method for WSN missing data [J ] . AEU-International Journal of Electronics and Communications , 2017 ( 79 ): 267 - 274 .
HE L , QI H , ZARETZKI R . Beta process joint dictionary learning for coupled feature spaces with application to single image super- resolution [J ] . Computer Vision & Pattern Recognition , 2013 , 9 ( 4 ): 345 - 352 .
GUPTA S K , PHUNG D , ADAMS B , et al . A Bayesian framework for learning shared and individual subspaces from multiple data sources [C ] // Pacific-Asia Conference on Advances in Knowledge Discovery & Data Mining . 2011 , 6634 ( 1 ): 136 - 147 .
GUPTA S K , PHUANG D , VENKATESH S . A Bayesian nonparametric joint factor model for learning shared and individual subspaces from multiple data sources [C ] // Proc of Siam Int Conference on Data Mining . 2013 : 200 - 212 .
LI S , TAO X , LU J . Variational inference for nonparametric subspace dictionary learning with hierarchical Beta process [C ] // IEEE International Conference on Acoustics . 2017 : 2691 - 2695 .
LI S , TAO X , DONG L . A nonparametric Bayesian approach to joint multiple dictionary learning with separate image sources [J ] . Signal &Information Processing , 2016 : 1155 - 1159 .
CHASPARI T , TSILIFIS P . MCMC inference of parametric dictionaries for sparse Bayesian approximations [J ] . IEEE Transactions on Signal Processing , 2016 , 64 ( 12 ): 3077 - 3092 .
0
浏览量
996
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构