浏览全部资源
扫码关注微信
南京师范大学电气与自动化工程学院,江苏 南京 210023
[ "闵富红(1970- ),女,江苏海安人,博士,南京师范大学教授,主要研究方向为非线性电路系统、电力系统稳定性分析。" ]
[ "马汉媛(1994- ),女,陕西安康人,南京师范大学硕士生,主要研究方向为电力系统定性分析与控制。" ]
[ "王耀达(1993- ),男,江苏宜兴人,南京师范大学硕士生,主要研究方向为电力系统定性分析与控制。" ]
网络出版日期:2019-01,
纸质出版日期:2019-01-25
移动端阅览
闵富红, 马汉媛, 王耀达. 含功率扰动电力系统混沌振荡的动态滑模控制[J]. 通信学报, 2019,40(1):119-129.
Fuhong MIN, Hanyuan MA, Yaoda WANG. Surface sliding mode controller for chaotic oscillation in power system with power disturbance[J]. Journal on communications, 2019, 40(1): 119-129.
闵富红, 马汉媛, 王耀达. 含功率扰动电力系统混沌振荡的动态滑模控制[J]. 通信学报, 2019,40(1):119-129. DOI: 10.11959/j.issn.1000-436x.2019005.
Fuhong MIN, Hanyuan MA, Yaoda WANG. Surface sliding mode controller for chaotic oscillation in power system with power disturbance[J]. Journal on communications, 2019, 40(1): 119-129. DOI: 10.11959/j.issn.1000-436x.2019005.
随着电力行业的飞速发展,电力系统中出现极具危害的混沌振荡可能性增大,维持电力系统稳定的重要性日益突出。通过建立含功率扰动项的四阶电力系统模型,对 Lyapunov 指数、分岔图和谱熵等进行分析,讨论了功率扰动项的加入对电力系统运动状态的影响。同时,基于具有继电特性的切换函数设计了一种动态面滑模控制器,仿真结果表明该控制器在快速平滑抑制系统混沌振荡的同时,能够有效避免抖振问题,并且具有较强的顽健性。
With the rapid development of the power industry
the possibility of chaotic oscillation increases in the power system
and the importance of maintaining the stability of the power system is prominent.Through a fourth-order power system model with power perturbation term built
the Lyapunov exponent spectrum
bifurcation diagram and spectral entropy were analyzed
respectively.The influence of power disturbance terms on power system motion was discussed in detail.Moreover
a dynamic surface sliding mode controller was designed based on the switching function with relay characteristics.Simulation results show that the controller can suppress the chaotic oscillation quickly and smoothly
and effectively avoid chattering and own strong robustness.
张卫东 , 张伟年 . 电力系统混沌振荡的参数分析 [J ] . 电网技术 , 2000 , 24 ( 12 ): 17 - 20 .
ZHANG W D , ZHANG W N . Parametric analysis of chaotic oscillations in power systems [J ] . Power Grid Technology , 2000 , 24 ( 12 ): 17 - 20 .
宋墩文 , 姜苏娜 , 郝建红 , 等 . 电力系统低频振荡分岔和混沌机理述评 [J ] . 华东电力 , 2014 , 42 ( 6 ): 1115 - 1123 .
SONG D W , JIANG S N , HAO J H , et al . Review on the bifurcation and chaos mechanism of low frequency oscillation in power systems [J ] . East China Power , 2014 , 42 ( 6 ): 1115 - 1123 .
ABADI A S A , BALOCHIAN S . Chaos control of the power system via sliding mode based on fuzzy supervisor [J ] . International Journal of Intelligent Computing & Cybernetics , 2017 , 10 ( 1 ): 68 - 79 .
JI W , VENKATASUBRAMANIAN V . Hard-limit induced chaos in a fundamental power system model [J ] . International Journal of Electrial Power and Energy Systems , 1996 , 18 ( 5 ): 279 - 295 .
闵富红 , 马美玲 , 翟炜 , 等 . 基于继电特性函数的互联电力系统混沌控制 [J ] . 物理学报 , 2014 , 63 ( 05 ): 70 - 77 .
MIN F H , MA M L , ZHAI W , et al . Chaos control of interconnected power system based on relay characteristic function [J ] . Journal of Physics , 2014 , 63 ( 5 ): 70 - 77 .
MA M L , MIN F H . Bifurcation behavior and coexisting motions in a time-delayed power system [J ] . Chinese Physics B , 2015 , 24 ( 3 ): 78 - 86 .
杨晓辉 , 王毅 , 刘小平 , 等 . 基于状态负反馈的电力系统混沌控制 [J ] . 电测与仪表 , 2017 , 54 ( 14 ): 76 - 80 .
YANG X H , WANG Y , LIU X P , et al . Chaos control of power system based on state negative feedback [J ] . Electrical Measurement and Instrument , 2017 , 54 ( 14 ): 76 - 80 .
LI K , YU W , DING Y . Successive lag synchronization on nonlinear dynamical networks via linear feedback control [J ] . Nonlinear Dynamics , 2015 , 80 ( 1-2 ): 421 - 430 .
WANG Y , ZHANG C . Synchronization of the fractional order finance systems with activation feedback control [J ] . Communications in Nonlinear Science & Numerical Simulation , 2009 , 14 ( 8 ): 3351 - 3357 .
ROY S B , BHASIN S , KAR I N . Robust gradient-based adaptive control of nonlinearly parametrized plants [J ] . IEEE Control Systems Letters , 2017 , 1 ( 2 ): 352 - 357 .
CHEN M , TAO G . Adaptive fault-tolerant control of uncertain nonlinear large-scale systems with unknown dead zone [J ] . IEEE Transactions on Cybernetics , 2016 , 46 ( 8 ): 1851 - 1862 .
LIN D , WANG X . Self-organizing adaptive fuzzy neural control for the synchronization of uncertain chaotic systems with random-varying parameters [J ] . Neurocomputing , 2011 , 74 ( 12-13 ): 2241 - 2249 .
WANG X Y , WANG M J . Dynamic analysis of the fractional-order Liu system and its synchronization [J ] . Chaos:An Interdisciplinary Journal of Nonlinear Science , 2007 , 17 ( 3 ): 304 - 311 .
ZRIBI M , ALRIFAI M T , SMAOUI N . Control of chaos in a single machine infinite bus power system using the discrete sliding mode control technique [J ] . Discrete Dynamics in Nature & Society , 2018 ( 11 ): 1 - 14 .
LI C L , WU L . Sliding mode control for synchronization of fractional permanent magnet synchronous motors with finite time [J ] . Optik-International Journal for Light and Electron Optics , 2016 , 127 ( 6 ): 3329 - 3332 .
PRASAD S , PURWAR S , KISHOR N . Non-linear sliding mode load frequency control in multi-area power system [J ] . Control Engineering Practice , 2017 , 61 : 81 - 92 .
PRECUP R E , TOMESCU M L . Stable fuzzy logic control of a general class of chaotic systems [J ] . Neural Computing & Applications , 2014 , 26 ( 3 ): 1 - 10 .
WANG X Y , SONG J M . Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control [J ] . Communications in Nonlinear Science & Numerical Simulation , 2009 , 14 ( 8 ): 3351 - 3357 .
倪骏康 , 刘崇新 , 庞霞 . 电力系统混沌振荡的等效快速终端模糊滑模控制 [J ] . 物理学报 , 2013 , 62 ( 19 ): 107 - 113 .
NI J K , LIU C X , PANG X . Equivalent fast terminal fuzzy sliding mode control for chaotic oscillation in power systems [J ] . ACTA Physics , 2013 , 62 ( 19 ): 107 - 113 .
NI J K , LIU L , LIU C , et al . Fast fixed-time nonsingular terminal sliding mode control and its application to chaos suppression in power system [J ] . IEEE Transactions on Circuits & Systems II Express Briefs , 2017 , 64 ( 2 ): 151 - 155 .
SI G , ZHU J , DIAO L , et al . Modeling,nonlinear dynamic analysis and control of fractional PMSG of wind turbine [J ] . Nonlinear Dynamics , 2016 , 88 ( 2 ): 1 - 16 .
孙克辉 , 贺少波 , 何毅 , 等 . 混沌伪随机序列的谱熵复杂性分析 [J ] . 物理学报 , 2013 , 62 ( 1 ): 27 - 34 .
SUN K H , HE S B , HE Y , et al . Spectral entropy complexity analysis of chaotic pseudorandom sequences [J ] . Journal of Physics , 2013 , 62 ( 1 ): 27 - 34 .
0
浏览量
896
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构