浏览全部资源
扫码关注微信
北方工业大学城市道路交通智能控制技术北京市重点实验室,北京 100144
[ "熊昌镇(1979-),男,福建建宁人,博士,北方工业大学副教授,主要研究方向为交通图像处理、机器学习。" ]
[ "智慧(1991-),女,内蒙古乌兰察布人,北方工业大学硕士生,主要研究方向为图像语义分割、注意力机制。" ]
网络出版日期:2019-01,
纸质出版日期:2019-01-25
移动端阅览
熊昌镇, 智慧. 融合多尺度信息的弱监督语义分割及优化[J]. 通信学报, 2019,40(1):163-171.
Changzhen XIONG, Hui ZHI. Weakly supervised semantic segmentation and optimization algorithm based on multi-scale feature model[J]. Journal on communications, 2019, 40(1): 163-171.
熊昌镇, 智慧. 融合多尺度信息的弱监督语义分割及优化[J]. 通信学报, 2019,40(1):163-171. DOI: 10.11959/j.issn.1000-436x.2019004.
Changzhen XIONG, Hui ZHI. Weakly supervised semantic segmentation and optimization algorithm based on multi-scale feature model[J]. Journal on communications, 2019, 40(1): 163-171. DOI: 10.11959/j.issn.1000-436x.2019004.
为提高弱监督语义分割算法精度,提出一种融合多尺度特征的分割及优化算法。首先,基于迁移学习算法构建多尺度特征模型,类别预测时引入新分类器,减少因预测目标类信息错误导致分割失败的情况;其次,将多尺度模型与原迁移学习模型进行加权集成,增强模型泛化性能;最后,结合预测类可信度调整分割图中相应类像素的可信度,规避假正例分割区域。在VOC 2012验证集上的平均交并比为58.8%,测试集上的平均交并比为57.5%,同比原迁移学习模型分别提升12.9%和12.3%,也优于其他以类标作为监督信息的语义分割算法。
In order to improve the accuracy of weakly-supervised semantic segmentation method
a segmentation and optimization algorithm that combines multi-scale feature was proposed.The new algorithm firstly constructs a multi-scale feature model based on transfer learning algorithm.In addition
a new classifier was introduced for category prediction to reduce the failure of segmentation due to the prediction of target class information errors.Then the designed multi-scale model was fused with the original transfer learning model by different weights to enhance the generalization performance of the model.Finally
the predictions class credibility was added to adjust the credibility of the corresponding class of pixels in the segmentation map
avoiding false positive segmentation regions.The proposed algorithm was tested on the challenging VOC 2012 dataset
the mean intersection-over-union is 58.8% on validation dataset and 57.5% on test dataset.It outperforms the original transfer-learning algorithm by 12.9% and 12.3%.And it performs favorably against other segmentation methods using weakly-supervised information based on category labels as well.
关涛 , 周东翔 , 刘云辉 . 基于色差向量场的彩色光学显微细胞图像分割 [J ] . 光学学报 , 2014 , 34 ( 01 ):0115001.
GUAN T , ZHOU D X , LIU Y H . Color optical microscopic cell image segmentation based on color difference vector field [J ] . ACTA Optica Sinica , 2014 , 34 ( 01 ):0115001.
孙延奎 . 光学相干层析医学图像处理及其应用 [J ] . 光学精密工程 , 2014 , 22 ( 04 ): 1086 - 1104 .
SUN Y K . Medical image processing techniques based on optical coherence tomography and their applications [J ] . Optics and Precision Engineering , 2014 , 22 ( 04 ): 1086 - 1104 .
ESS A , MUELLER T , GRABNER H , et al . Segmentation-based urban traffic scene understanding [C ] // British Machine Vision Conference,BMVC . 2009 ( 84 ): 1 - 11 .
WAN J , WANG D Y , HOI S C H , et al . Deep learning for content-based image retrieval:a comprehensive study [C ] // the 22nd ACM international conference on Multimedia . 2014 , 978 : 157 - 166 .
OBERWEGER M , WOHLHART P , LEPETIT V . Hands deep in deep learning for hand pose estimation [C ] // Computer Vision Winter Workshop . 2015 : 21 - 30 .
向守兵 , 苏光大 , 任小龙 , 等 . 实时手指交互系统的嵌入式实现 [J ] . 光学精密工程 , 2011 , 19 ( 08 ): 1911 - 1920 .
XIANG S B , SHU G D , REN X L , et al . Embedded implementation of real-time finger interaction system, [J ] . Optics and Precision Engineering , 2011 , 19 ( 08 ): 1911 - 1920 .
HE K , GKIOXARI G,DOLLÁR P , et al . Mask R-CNN [C ] // 2017 IEEE International Conference on Computer Vision . 2017 , 2380 : 2980 - 2988 .
PATHAK D , SHELHAMER E , LONG J , et al . Fully convolutional multi-class multiple instance learning [C ] // International Conference on Learning Representations . 2015 : 1 - 4
PATHAK D , KRAHENBUHL P , DARRELL T . Constrained convolutional neural networks for weakly supervised segmentation [C ] // IEEE International Conference on Computer Vision . 2015 , 1550 : 1796 - 1804 .
KWAK S , HONG S , HAN B . Weakly supervised semantic segmentation using superpixel pooling network [C ] // AAAI Conference on Artificial Intelligence . 2017 : 4111 - 4117 .
KOLESNIKOV A , LAMPERT C H . SEE D,Expand and constrain:three principles for weakly-supervised image segmentation [C ] // European Conference on Computer Vision . 2016 , 9908 : 695 - 711 .
LIN L , WANG G R , ZHANG R , et al . Deep structured scene parsing by learning with image descriptions [C ] // IEEE Conference on Computer Vision and Pattern Recognition . 2016 , 1063 : 2276 - 2284 .
HONG S , OH J , LEE H , et al . Learning transferrable knowledge for semantic segmentation with deep convolutional neural network [C ] // IEEE Conference on Computer Vision and Pattern Recognition . 2016 , 1063 : 3204 - 3212 .
HONG S , YEO D , KWAK S , et al . Weakly supervised semantic segmentation using web-crawled videos [C ] // IEEE Conference on Computer Vision and Pattern Recognition . 2017 , 1063 : 2224 - 2232 .
BEARMAN A , RUSSAKOVSKY O , FERRARI V , et al . What’s the Point:Semantic Segmentation with Point Supervision [C ] // European Conference on Computer Vision . 2016 , 9911 : 549 - 565 .
PAPANDREOU G , CHEN L C , MURPHY K , et al . Weakly and semi-supervised learning of a DCNN for semantic image segmentation [C ] // IEEE International Conference on Computer Vision . 2015 , 1550 : 1742 - 1750 .
DAI J F , HE K M , SUN J . BoxSup:exploiting bounding boxes to supervise convolutional networks for semantic segmentation [C ] // IEEE International Conference on Computer Vision . 2015 , 1550 : 1635 - 1643 .
LIN D , DAI J F , JIA J Y , et al . ScribbleSup:scribble-supervised convolutional networks for semantic segmentation [C ] // IEEE Conference on Computer Vision and Pattern Recognition . 2016 , 1063 : 3159 - 3167 .
CHEN L C , YANG Y , WANG J , et al . Attention to scale:scale-aware semantic image segmentation [C ] // IEEE Conference on Computer Vision and Pattern Recognition . 2016 , 1063 : 3640 - 3649 .
YU F , KOLTUN V . Multi-Scale context aggregation by dilated convolutions [C ] // International Conference on Learning Representations . 2015 : 1 - 13
ZHAO H S , SHI J P , QI X J , et al . Pyramid scene parsing network [C ] // IEEE Conference on Computer Vision and Pattern Recognition . 2017 , 1063 : 6230 - 6239 .
HONG S , ROH B , KIM K H , et al . PVANet:lightweight deep neural networks for real-time object detection [C ] // Advances in Neural Information Processing Systems . 2016 : 1 - 7
REN S Q , HE K M , GIRSHICK R , et al . Faster R-CNN:towards real-time object detection with region proposal networks [C ] // IEEE Transactions on Pattern Analysis and Machine Intelligence . 2015 : 1137 - 1149 .
窦燕 , 孔令富 , 王柳锋 . 基于视觉熵的视觉注意计算模型 [J ] . 光学学报 , 2009 , 29 ( 09 ): 2511 - 2515 .
DOU Y , KONG L F , WANG L F . A computational model of visual attention based on visual entropy [J ] . ACTA Optica Sinica , 2009 , 29 ( 9 ): 2511 - 2515 .
LIN T Y , MAIRE M , BELONGIE S , et al . Microsoft COCO:common objects in context [C ] // European Conference on Computer Vision . 2014 , 8693 : 740 - 755 .
EVERINGHAM M , GOOL L , WILLIAMS C K , et al . The pascal visual object classes (VOC) challenge [J ] . International Journal of Computer Vision , 2010 , 88 ( 2 ): 303 - 338 .
周志华 . 机器学习 [M ] . 北京 : 清华大学出版社 , 2016 : 171 - 184 .
ZHOU Z H . Machine learning [M ] . Beijing : Tsinghua University Press , 2016 : 171 - 184 .
AHN J , KWAK S . Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation [C ] // IEEE Conference on Computer Vision and Pattern Recognition . 2018 : 4981 - 4990
QI X J , LIU Z Z , SHI J P , et al . Augmented feedback in semantic segmentation under image level supervision [C ] // European Conference on Computer Vision . 2016 , 9912 : 90 - 105 .
WEI Y C , FENG J S , LIANG X D , et al . Object region mining with adversarial erasing:a simple classification to semantic segmentation approach [C ] // IEEE Conference on Computer Vision and Pattern Recognition . 2017 , 1063 : 6488 - 6496 .
0
浏览量
1356
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构