浏览全部资源
扫码关注微信
海军工程大学信息安全系,湖北 武汉 430033
[ "俞艺涵(1992–),男,浙江金华人,海军工程大学博士生,主要研究方向为信息安全、隐私保护。" ]
[ "付钰(1982–),女,湖北武汉人,海军工程大学副教授,主要研究方向为信息安全、风险评估。" ]
[ "吴晓平(1961–),男,山西新绛人,海军工程大学教授、博士生导师,主要研究方向为信息安全、密码学。" ]
网络出版日期:2018-12,
纸质出版日期:2018-12-25
移动端阅览
俞艺涵, 付钰, 吴晓平. 基于Shannon信息熵与BP神经网络的隐私数据度量与分级模型[J]. 通信学报, 2018,39(12):10-17.
Yihan YU, Yu FU, Xiaoping WU. Metric and classification model for privacy data based on Shannon information entropy and BP neural network[J]. Journal on communications, 2018, 39(12): 10-17.
俞艺涵, 付钰, 吴晓平. 基于Shannon信息熵与BP神经网络的隐私数据度量与分级模型[J]. 通信学报, 2018,39(12):10-17. DOI: 10.11959/j.issn.1000-436x.2018286.
Yihan YU, Yu FU, Xiaoping WU. Metric and classification model for privacy data based on Shannon information entropy and BP neural network[J]. Journal on communications, 2018, 39(12): 10-17. DOI: 10.11959/j.issn.1000-436x.2018286.
针对当前网络环境下由隐私数据识别困难问题所引出的隐私度量与分级需求,提出了一种基于 Shannon信息熵与BP神经网络的隐私数据度量与分级模型。该模型从3个维度建立了两层隐私度量要素,基于数据集本身,利用Shannon信息熵为二级隐私要素定权,并由此计算数据集中各条记录在一级隐私度量要素下的隐私量;利用BP神经网络在不预设度量权值的情况下,输出隐私数据分级结果。实验表明,该模型能够在极低的误判率和较小的误判偏差下实现对隐私数据的度量与分级。
Aiming at the requirements of privacy metric and classification for the difficulty of private data identification in current network environment
a privacy data metric and classification model based on Shannon information entropy and BP neural network was proposed. The model establishes two layers of privacy metrics from three dimensions. Based on the dataset itself
Shannon information entropy was used to weight the secondary privacy elements
and the privacy of each record in the dataset under the first-level privacy metrics was calculated. The trained BP neural network was used to output the classification result of privacy data without pre-determining the metric weight. Experiments show that the model can measure and classify private data with low false rate and small misjudged deviation.
CHANG V , SUN G , LI J . Guest editorial: security and privacy for multimedia in the internet of things (IoT) [J ] . International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems , 2002 , 10 ( 5 ): 557 - 570 .
SWEENEY L . K-anonymity: a model for protecting privacy [J ] . International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems , 2002 , 10 ( 5 ): 557 - 570 .
MACHANAVAJJHALA A , KIFER D , GEHRKE J . L-diversity: privacy beyond k -anonymity [J ] . ACM Transactions on Knowledge Discovery from Data , 2007 , 1 ( 1 ): 3 .
DWORK C , MCSHERRY F , NISSIM K . Calibrating noise to sensitivity in private data analysis [J ] . Proceedings of the Vldb Endowment , 2006 , 7 ( 8 ): 637 - 648 .
DWORK C , ROTH A . The algorithmic foundations of differential privacy [M ] . Boston : Now Publishers Inc . 2014
GUZMAN J A D , THILAKARATHNA K , SENEVIRATNE A . Security and privacy approaches in mixed reality: a literature survey [J ] . arXiv:1802 .05797v2[cs.CR ] , 2018 .
LI N , LI T , VENKATASUBRAMANIAN S . Closeness: a new privacy measure for data publishing [J ] . IEEE Transactions on Knowledge &Data Engineering , 2010 ( 7 ): 943 - 956 .
GKOUNTOUNA O , TERROVITIS M . Anonymizing collections of tree-structured data [J ] . IEEE Transactions on Knowledge & Data Engineering , 2015 , 27 ( 8 ): 2034 - 2048 .
CLAUß S , SCHIFFNER S . Structuring anonymity metrics [C ] // The Workshop on Digital Identity Management .ACM, 2006 : 55 - 62 .
PENG C G , DING H F , ZHU Y J , et al . Information entropy models and privacy metrics methods for privacy protection [J ] . Journal of Software , 2016 , 27 ( 8 ): 1891 - 1903 .
ZHANG W J , HUI L I . A differentially-private mechanism for multi-level data publishing [J ] . Chinese Journal of Network & Information Security , 2015 , 1 ( 1 ): 58 - 65 .
JORGENSEN Z , YU T , CORMODE G . Conservative or liberal? Personalized differential privacy [C ] // International Conference on Data Engineering. IEEE , 2015 : 1023 - 1034 .
WAGNER I , ECKHOFF D . Technical privacy metrics: a systematic survey [J ] . Computer Science , 2018 , 51 ( 3 ).
SHANNON C E . A mathematical theory of communication [J ] . Bell System Technical Journal , 1948 , 27 ( 4 ): 379 - 423 .
BARNUM H , BARRETT J , CLARK L O , et al . Entropy and information causality in general probabilistic theories [J ] . New Journal of Physics , 2012 , 14 ( 12 ): 129401 .
ZHANG G , ZHANG Z , HE Y . Review on BP neural network applied in the textile and clothing Field [J ] . Shandong Textile Science & Technology , 2013 .
PHELPS J , NOWAK G , FERRELL E . Privacy concerns and consumer willingness to provide personal information [J ] . Journal of Public Policy & Marketing , 2013 , 19 ( 1 ): 27 - 41 .
0
浏览量
877
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构