浏览全部资源
扫码关注微信
1. 中国人民解放军战略支援部队信息工程大学密码工程学院,河南 郑州 450001
2. 中国人民解放军61213部队,山西 临汾 041000
[ "郭渊博(1975−),男,陕西周至人,博士,中国人民解放军战略支援部队信息工程大学教授、博士生导师,主要研究方向为大数据安全、态势感知。" ]
[ "刘春辉(1990−),男,山东安丘人,解放军61213部队助理工程师,中国人民解放军战略支援部队信息工程大学硕士生,主要研究方向为网络安全、用户画像。" ]
[ "孔菁(1993−),女,辽宁营口人,中国人民解放军战略支援部队信息工程大学硕士生,主要研究方向为网络安全、异常检测。" ]
[ "王一丰(1994−),男,江苏泰兴人,中国人民解放军战略支援部队信息工程大学硕士生,主要研究方向为多步网络安全、深度学习。" ]
网络出版日期:2018-12,
纸质出版日期:2018-12-25
移动端阅览
郭渊博, 刘春辉, 孔菁, 等. 内部威胁检测中用户行为模式画像方法研究[J]. 通信学报, 2018,39(12):141-150.
Yuanbo GUO, Chunhui LIU, Jing KONG, et al. Study on user behavior profiling in insider threat detection[J]. Journal on communications, 2018, 39(12): 141-150.
郭渊博, 刘春辉, 孔菁, 等. 内部威胁检测中用户行为模式画像方法研究[J]. 通信学报, 2018,39(12):141-150. DOI: 10.11959/j.issn.1000-436x.2018282.
Yuanbo GUO, Chunhui LIU, Jing KONG, et al. Study on user behavior profiling in insider threat detection[J]. Journal on communications, 2018, 39(12): 141-150. DOI: 10.11959/j.issn.1000-436x.2018282.
行为画像技术利用无标注历史数据构建用户行为“常态”,是检测企业内部威胁的有效手段。当前标签式画像方法依赖人工提取特征,多用简单统计方法处理数据,导致用户画像模型缺少细节、不够全面。提出了一种行为特征自动提取和局部全细节行为画像方法,以及一种行为序列划分和全局业务状态转移预测方法,能够较全面地刻画用户行为模式。构建了一个基于行为画像的内部威胁检测框架,将局部描写与全局预测相结合,提高了检测准确率。最后用CMU-CERT数据集进行了实验,AUC(area under curve)得分0.88
F1得分0.925,可有效应用于内部威胁检测过程中。
Behavior profiling technic using no-labeled historical data to build normal behavior model is an effective way to detect insider attackers. The state-of-the-art labeled profile methods extract features artificially and process data by simple statistical methods
whose incomplete behavior model lacks details. An automated feature extracting and full-detail behavior profiling method as well as a behavior sequence splitting and business state transition predicting way was proposed. Combining above two methods
an insider threats detection framework was established
which improved detection accuracy. Experimenting with CMU-CERT data set
AUC (area under curve) score was 0.88 and F1 score was 0.925. With the better performance
it can be used in detecting insider threats.
BAKER W , HYLENDER A , PAMULA C D , et al . 2017 data breach investigations report [R ] . Verizon RISK Team , 2017 : 49 .
SCULZE H . Insider threat spotlight report 2018 [R ] . Crowd Research Partners , 2018 .
杨光 , 马建刚 , 于爱民 , 等 . 内部威胁检测研究 [J ] . 信息安全学报 , 2016 ( 3 ): 21 - 36 .
YANG G , MA J G , YU A M , et al . Survey of insider threat detection [J ] . Journal of Cyber Security , 2016 ( 3 ): 21 - 36 .
NURSE J R C , BUCKLEY O , LEGG P A , et al . Understanding insider threat: A framework for characterizing attacks [C ] // Security and Privacy Workshops (SPW) , 2014 : 214 - 228 .
LEGG P A , BUCKLEY O , GOLDSMITH M , et al . Automated insider threat detection system using user and role-based profile assessment [J ] . IEEE Systems Journal , 2015 .
RASHID T , AGRAFIOTIS I , NURSE J R . A new take on detecting insider threats: exploring the use of hidden markov models [C ] // The 2016 International Workshop on Managing Insider Security Threats . 2016 : 47 - 56 .
GAMACHCHI A , SUN L , BOZTAS S . Graph based framework for malicious insider threat detection [C ] // The 50th Hawaii International Conference on System Science . 2017 : 2638 - 2647 .
GAVAI G , SRICHARAN K , GUNNING D , et al . Supervised and unsupervised methods to detect insider threat from enterprise social and online activity data [J ] . JOWUA , 2015 , 6 ( 4 ): 47 - 63 .
PARVEEN P . Evolving insider threat detection using stream analytics and big data [M ] . The University of Texas at Dallas , 2013 .
LIU A , MARTIN C , HETHERINGTON T , et al . A comparison of system call feature representations for insider threat detection [C ] // Information Assurance Workshop, Proceedings from the Sixth Annual IEEE SMC . 2005 : 340 - 347 .
AGRAFIOTIS I , LEGG P A , GOLDSMITH M , et al . Towards a user and role-based sequential behavioral analysis tool for insider threat detection [J ] . J. Internet Serv. Inf. Secur ., 2014 , 4 ( 4 ): 127 - 137 .
周敬才 , 胡华平 , 岳虹 . 基于 Lucene 全文检索系统的设计与实现 [J ] . 计算机工程与科学 , 2015 , 37 ( 2 ): 252 - 256 .
ZHOU J C , HU H P , YUE H . Design and implementation of Lucene-based full-text retrieval system [J ] . Computer Engineering and Science , 2015 , 37 ( 2 ): 252 - 256 .
周志华 . 机器学习 [M ] . 北京 : 清华大学出版社 , 2016 .
ZHOU Z H . Machine Learning [M ] . Beijing : Tsinghua university press , 2016 .
EDDY S R . Hidden Markov models [J ] . Current Opinion in Structural biology ., 1996 , 6 ( 3 ): 361 - 365 .
0
浏览量
1188
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构