浏览全部资源
扫码关注微信
1. 燕山大学信息科学与工程学院,河北 秦皇岛 066004
2. 河北省信息传输与信号处理重点实验室,河北 秦皇岛 066004
[ "李玉博(1985−),男,河北衡水人,博士,燕山大学讲师,主要研究方向为编码理论、序列设计、信息处理。" ]
[ "陈邈(1993−),男,河北唐山人,燕山大学硕士生,主要研究方向为无线通信、序列设计。" ]
[ "刘涛(1987−),女,河北秦皇岛人,燕山大学博士生,主要研究方向为组合编码、信息安全、序列设计。" ]
[ "张颖(1997−),女,山西平定县人,本科生,主要研究方向为无线通信、编码理论。" ]
网络出版日期:2018-11,
纸质出版日期:2018-11-25
移动端阅览
李玉博, 陈邈, 刘涛, 等. 长度为奇素数的完备高斯整数序列构造法[J]. 通信学报, 2018,39(11):190-197.
Yubo LI, Miao CHEN, Tao LIU, et al. Constructions of perfect Gaussian integer sequences of odd prime length[J]. Journal on communications, 2018, 39(11): 190-197.
李玉博, 陈邈, 刘涛, 等. 长度为奇素数的完备高斯整数序列构造法[J]. 通信学报, 2018,39(11):190-197. DOI: 10.11959/j.issn.1000-436x.2018230.
Yubo LI, Miao CHEN, Tao LIU, et al. Constructions of perfect Gaussian integer sequences of odd prime length[J]. Journal on communications, 2018, 39(11): 190-197. DOI: 10.11959/j.issn.1000-436x.2018230.
提出一类基于分圆类构造完备高斯整数序列的方法。分别通过有限域GF(p)上的2阶和4阶分圆类,构造得到自由度分别为3和5的高斯整数序列,序列长度为奇素数,该序列具有良好的完备自相关性能。该构造方法解决了以往利用分圆类计算复杂度较高,不易求解的问题,简化了序列的生成方法。该序列在无线通信中具有良好的应用前景。
Constructions of perfect Gaussian integer sequences (PGIS) based on the cyclotomic classes were proposed.The PGIS with degree 3 and 5 were constructed respectively from the cyclotomic classes of order 2 and 4.The presented sequences with odd prime length have ideal autocorrelations.The methods solved the problem that the traditional constructions of PGIS from the cyclotomic classes have high computational complexity.As a result
this kind of sequences will be useful in the applications of wireless communications.
CHU D . Polyphase codes with good periodic correlation properties [J ] . IEEE Transactions on Information Theory , 2003 , 18 ( 4 ): 531 - 532 .
YU N Y , GONG G . New binary sequences with optimal autocorrelation magnitude [J ] . IEEE Transactions on Information Theory , 2008 , 54 ( 10 ): 4771 - 4779 .
WANG S H , LI C P , LEE K C , et al . A novel low-complexity precoded OFDM system with reduced PAPR [J ] . IEEE Transactions on Signal Processing , 2015 , 63 ( 6 ): 1366 - 1376 .
MILEWSKI A . Periodic sequences with optimal properties for channel estimation and fast start-up equalization [J ] . Journal of Research &Development , 1983 , 27 ( 5 ): 426 - 431 .
LUKE H D , SCHOTTEN H D , HADINEJAD M H . Binary and quadriphase sequences with optimal autocorrelation properties:a survey [J ] . IEEE Transactions on Information Theory , 2003 , 49 ( 12 ): 3271 - 3282 .
FAN P Z , DARNELL M . Maximal length sequences over Gaussian integers [J ] . Electronics Letters , 1994 , 30 ( 16 ): 1286 - 1287 .
PEI S C , CHANG K W . Perfect Gaussian integer sequences of arbitrary length [J ] . IEEE Signal Processing Letters , 2014 , 22 ( 8 ): 1040 - 1044 .
CHANG H H , LI C P , LEE C D , et al . Perfect Gaussian integer sequences of arbitrary composite length [J ] . IEEE Transactions on Information Theory , 2015 , 61 ( 7 ): 4107 - 4115 .
PENG X P , XU C Q . New constructions of perfect Gaussian integer sequences of even length [J ] . IEEE Communications Letters , 2014 , 18 ( 9 ): 1547 - 1550 .
WANG S H , LI C P , CHANG H H , et al . A systematic method for constructing sparse Gaussian integer sequences with ideal periodic autocorrelation functions [J ] . IEEE Transactions on Communications , 2016 , 64 ( 1 ): 365 - 376 .
LEE C D , HUANG Y P , CHANG Y , et al . Perfect Gaussian integer sequences of odd period 2 m −1 [J ] . IEEE Signal Processing Letters , 2015 , 22 ( 7 ): 881 - 885 .
LEE C D , LI C P , CHANG H H , et al . Further results on degree-2 perfect Gaussian integer sequences [J ] . IET Communications , 2016 , 10 ( 12 ): 1542 - 1552 .
LEE C D , HONG S H . Generation of long perfect Gaussian integer sequences [J ] . IEEE Signal Processing Letters , 2017 , 24 ( 4 ): 515 - 519 .
LEE C D , CHEN Y H . Families of Gaussian integer sequences with high energy efficiency [J ] . IET Communications , 2016 , 10 ( 17 ): 2416 - 2421 .
CHANG K J , CHANG H H . Perfect Gaussian integer sequences of period p k with degrees equal to or less than k+1 [J ] . IEEE Transactions on Communications , 2017 , 65 ( 9 ): 3723 - 3733 .
YANG Y , TANG X H , ZHOU Z C . Perfect Gaussian integer sequences of odd prime length [J ] . IEEE Signal Processing Letters , 2012 , 19 ( 10 ): 615 - 618 .
STORER T . Cyclotomy and difference sets [M ] . Chicago:Markham Publishing Company . 1967 .
DING C , YIN J . Sets of optimal frequency hopping sequences [J ] . IEEE Transactions on Information Theory , 2008 , 54 ( 8 ): 3741 - 3745 .
BENEDETTO J J , KONSTANTINIDIS I , RANGASWAMY M . Phase-coded waveforms and their design [J ] . IEEE Signal Processing Magazine , 2009 , 26 ( 1 ): 22 - 31 .
0
浏览量
774
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构