浏览全部资源
扫码关注微信
1. 北京交通大学计算机与信息技术学院,北京 100044
2. 北京建筑大学电气与信息工程学院,北京 100044
3. 国家计算机网络应急技术处理协调中心,北京 100029
4. 北京邮电大学网络技术研究院,北京 100876
5. 卡迪夫大学计算机科学与信息学院,英国 卡迪夫,CF24 3AA
[ "刘亚姝(1977−),女,吉林大安人,北京交通大学博士生,主要研究方向为信息安全、数据挖掘。" ]
[ "王志海(1963–),男,河南安阳人,博士,北京交通大学教授、博士生导师,主要研究方向为数据挖掘、机器学习、计算智能。" ]
[ "严寒冰(1975–),男,江西进贤人,博士,国家计算机网络应急技术处理协调中心教授级高工、博士生导师,主要研究方向为信息安全。" ]
[ "侯跃然(1994–),男,内蒙古呼和浩特人,北京邮电大学硕士生,主要研究方向为信息安全、机器学习。" ]
[ "来煜坤(1978–),男,浙江萧山人,博士,英国卡迪夫大学副教授,主要研究方向为计算机视觉、图像处理。 " ]
网络出版日期:2018-11,
纸质出版日期:2018-11-25
移动端阅览
刘亚姝, 王志海, 严寒冰, 等. 抗混淆的恶意代码图像纹理特征描述方法[J]. 通信学报, 2018,39(11):44-53.
Yashu LIU, Zhihai WANG, Hanbing YAN, et al. Method of anti-confusion texture feature descriptor for malware images[J]. Journal on communications, 2018, 39(11): 44-53.
刘亚姝, 王志海, 严寒冰, 等. 抗混淆的恶意代码图像纹理特征描述方法[J]. 通信学报, 2018,39(11):44-53. DOI: 10.11959/j.issn.1000-436x.2018227.
Yashu LIU, Zhihai WANG, Hanbing YAN, et al. Method of anti-confusion texture feature descriptor for malware images[J]. Journal on communications, 2018, 39(11): 44-53. DOI: 10.11959/j.issn.1000-436x.2018227.
将图像处理技术与机器学习方法相结合是恶意代码可视化研究的一个新方法。在这种研究方法中,恶意代码灰度图像纹理特征的描述对恶意代码分类结果的准确性影响较大。为此,提出新的恶意代码图像纹理特征描述方法。通过将全局特征(GIST)与局部特征(LBP或dense SIFT)相融合,构造抗混淆、抗干扰的融合特征,解决了在恶意代码灰度图像相似度较高或差异性较大时全局特征分类准确性急剧降低的问题。实验表明,该方法与传统方法相比具有更好的稳定性和适用性,同时在较易混淆的数据集上,分类准确率也有了明显的提高。
It is a new method that uses image processing and machine learning algorithms to classify malware samples in malware visualization field.The texture feature description method has great influence on the result.To solve this problem
a new method was presented that joints global feature of GIST with local features of LBP or dense SIFT in order to construct combinative descriptors of malware gray-scale images.Using those descriptors
the malware classification performance was greatly improved in contrast to traditional method
especially for those samples have higher similarity in the different families
or those have lower similarity in the same family.A lot of experiments show that new method is much more effective and general than traditional method.On the confusing dataset
the accuracy rate of classification has been greatly improved.
杜敬凯 . 二进制恶意代码的同源性分析 [D ] . 北京:北京航空航天大学 , 2016 .
DU J K . Homology analysis of binary malicious code [D ] . Beijing:Beihang University , 2016 .
SATHYANARAYAN V S , KOHLI P , BRUHADESHWAR B . Signature generation and detection of malware families [C ] // Proceedings of Australasian Conference on Information Security and Privacy . 2008 : 336 - 349 .
ABBAS M F B , SRIKANTHAN T . Low-complexity signature-based malware detection for IoT devices [C ] // Proceedings of Applications and Techniques in Information Security . 2017 : 181 - 189 .
FIRDAUSI I , LIM C , ERWIN A , et al . Analysis of machine learning techniques used in behavior-based malware detection [C ] // IEEE International Conference on Advances in Computing . 2010 : 201 - 203 .
王蕊 , 冯登国 , 杨轶 , 等 . 基于语义的恶意代码行为特征提取及检测方法 [J ] . 软件学报 , 2012 , 23 ( 2 ): 378 - 393 .
WANG R , FENG D G , YANG Y , et al . Semantics-based malware be-havior signature extraction and detection method [J ] . Journal of Soft-ware , 2012 , 23 ( 2 ): 378 - 393 .
任李 , 潘晓中 . 基于对象语义的恶意代码检测方法 [J ] . 计算机应用研究 , 2013 , 30 ( 10 ): 3106 - 3113 .
REN L , PAN X Z . Object-semantics based malware detection meth-od [J ] . Application Research of Computers , 2013 , 30 ( 10 ): 3106 - 3113 .
SANTOS I , BREZO F , NIEVES J , et al . Idea:opcode-sequence based malware detection [C ] // International Conference on Engineering Secure Software and Systems . 2010 : 35 - 43 .
O’KANE P , SEZERAND S , MCLANGHLIN K . Detecting obfuscated malware using reduced opcode set and optimized runtime trace [J ] . Security Informatics , 2016 , 5 ( 1 ): 2 - 13 .
QIAO Y C , YUN X C , ZHANG Y Z , et al . Fast reused function retrieval method based on simHash and inverted index [C ] // The 15th IEEE International Conference on Trust,Security and Privacy in Computing and Communications . 2017 : 937 - 944 .
BONFANTE G , KACZMAREK M , MARION JY . Architecture of a morphological malware detector [J ] . Computer Virology , 2009 , 5 ( 3 ): 263 - 270 .
CESARE S , XIANG Y . A fast flow graph based classification system for packed and polymorphic malware on the end host [C ] // Proceedings of the 24th IEEE International Conference on Advanced Information Networking and Applications . 2010 : 721 - 728 .
KINABLE J , KOSTAKIS O . Malware classification based on call graph clustering [J ] . Computer Virology , 2011 , 7 ( 4 ): 233 - 245 .
TRINIUS P , HOLS T , GOBEL J , et al . Visual analysis of malware behavior using treemaps and thread graphs [C ] // the 6th International Workshop on Visualization for Cyber Security . 2010 : 33 - 38 .
CONTI G , BRATUS S , SHUBING A , et al . Automated mapping of large binary objects using primitive fragment type classification [J ] . Digital Investigation:The International Journal of Digital Forensics and Incident Response , 2010 , 7 : S3 - S12 .
NATARAJ L , KARTHIKEYAN S , JACOB G , et al . Malware images:visualization and automatic classification [C ] // The 8th International Symposium on Visualization for Cyber Security . 2011 : 21 - 29 .
HAN K S , LIM J H , KANG B J , et al . Malware analysis using visualized images and entropy graphs [J ] . International Journal of Information Security , 2015 , 14 ( 1 ): 1 - 14 .
YAN H B , ZHOU H , ZHANG H G . Automatic malware classification via PRICoLBP [J ] . Chinese Journal of Electronics , 2018 , 27 ( 4 ): 852 - 859 .
OLIVA A , TORRALBA A . Modeling the shape of the scene:a holistic representation of the spatial envelope [J ] . International Journal of Computer Vision , 2001 , 42 ( 3 ): 145 - 175 .
TORRALBA A , MURPHY A , FREEMAN K P , et al . Context-based vision systems for place and object recognition [C ] // International conference on Computer Vision . 2003 :273.
OJALA T , PIETIKAINEN M , MAENPAA T . Multiresolution gray-scale and rotation invariant texture classification with local binary patterns [J ] . IEEE Transactions on Pattern Analysis & Machine Intelligence , 2000 , 24 ( 7 ): 971 - 987 .
LOWE D G , . Object recognition from local scale-invariant features [C ] // International Conference on Computer Vision . 1999 : 1150 - 1157 .
0
浏览量
1419
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构