浏览全部资源
扫码关注微信
中南大学信息科学与工程学院,湖南 长沙410083
[ "梁建武(1964-),男,湖南长沙人,中南大学副教授,主要研究方向为量子通信和无线通信。" ]
[ "刘晓书(1994-),女,湖南衡阳人,中南大学硕士生,主要研究方向为量子通信和无线通信。" ]
[ "程资(1990-),女,河北晋州人,中南大学硕士生,主要研究方向为量子通信和无线通信。" ]
网络出版日期:2018-10,
纸质出版日期:2018-10-25
移动端阅览
梁建武, 刘晓书, 程资. 基于图态和中国剩余定理的量子秘密共享方案[J]. 通信学报, 2018,39(10):72-78.
Jianwu LIANG, Xiaoshu LIU, Zi CHENG. Quantum secret sharing with graph states based on Chinese remainder theorem[J]. Journal on communications, 2018, 39(10): 72-78.
梁建武, 刘晓书, 程资. 基于图态和中国剩余定理的量子秘密共享方案[J]. 通信学报, 2018,39(10):72-78. DOI: 10.11959/j.issn.1000-436x.2018220.
Jianwu LIANG, Xiaoshu LIU, Zi CHENG. Quantum secret sharing with graph states based on Chinese remainder theorem[J]. Journal on communications, 2018, 39(10): 72-78. DOI: 10.11959/j.issn.1000-436x.2018220.
受到量子图态几何结构和特性的启发,提出了一种基于图态和中国剩余定理的量子秘密共享方案。在该方案中,分发者在有限域内利用中国剩余定理分发秘密,秘密被编码到量子图态里并且通过酉正操作传送给合法参与者,合法参与者使用群恢复协议合作重建子秘密。该方案提供了一个简洁的方法,即通过使用纠缠图态的稳定子来传递信息,分析显示它能提供更好的信息安全性和性能。
Based on the topological features of quantum graph states
a quantum secret sharing scheme based on Chinese remainder theorem with a vivid graphic description was proposed.The dealer extracts sub-secrets according to Chinese remainder theorem over finite field
which were imbedded with quantum graph states and transmitted to the legal participants with unitary operations.Group-recovery protocols were used in the secret recovering processing through rebuilding sub-secrets among legal cooperative participants.Analysis shows that it could provide better security and capability of the information.
SHAMIR A . How to share a secret [J ] . Communication of ACM , 1979 , 22 ( 11 ): 621 - 613 .
HILLERY M , BUˇZEK V , BERTHIAUME A . Quantum secret sharing [J ] . Physical Review A , 1999 , 59 ( 3 ): 1829 - 1834 .
SHI R H , SU Q , GUO Y , et al . Quantum secret sharing based on Chinese remainder theorem [J ] . Communications in Theoretical Physics , 2011 , 55 ( 4 ): 573 - 578 .
GUO Y , ZHAO Y . High efficient quantum secret sharing based o-n the Chinese remainder theorem via the orbital angular momentum entanglement analysis [J ] . Quantum Information Processing , 2013 , 12 ( 2 ): 1125 - 1139 .
GUO Y , HUANG D Z , ZENG G H . Multiparty quantum secret s-haring of quantum states using entanglement states [J ] . Chinese Physics Letters , 2008 , 25 ( 1 ): 16 - 19 .
MARKHAM D , SANDERS B C . Graph states for quantum secret sharing [J ] . Physical Review A , 2008 , 78 ( 4 ):042309.
KEET A , FORTESCUE B , MARKHAM D , et al . Quantum secret sharing with qudit graph states [J ] . Physical Review A , 2010 , 82 ( 6 ):062315.
RAHAMAN R , PARKER M G . Quantum scheme for secret sharing based on local distinguish ability [J ] . Physical Review A , 2015 , 91 ( 2 ):022330.
TAVAKOLI A , HERBAUTS I , ZUKOWSKI M , et al . Secret sharing with a single dlevelquantum system [J ] . Physical Review A , 2015 , 92 ( 3 ):030302.
LIANG J W , ZHOU J , SHI J J , et al . Improving continuous variable quantum key distribution using the heralded noiseless linear amplifier with source in the middle [J ] . International Journal of Theoretical Physics , 2015 , 55 ( 2 ): 1156 - 1166 .
WANG C , HUANG P , HUANG D , et al . Practical security of continuous variable quantum key distribution with finite sampling bandwidtheffects [J ] . Physical Review A , 2016 , 93 ( 2 ):022315.
WU Y D , ZHOU J , GONG X B , et al . Continuous variable measurement device independent multipartite quantum communication [J ] . Physical Review A , 2016 , 93 ( 2 ):022325.
AMIRI R , WALLDEN P , KENT A , et al . Secure quantum signatures using insecure quantum channels [J ] . Physical Review A , 2016 , 3 ( 3 ):032325.
QIN H W , DAI Y W . An efficient (t,n) threshold quantum secret sharing without entanglement Quantum error correcting codes using qudit graph states [J ] . Modern Physics Letters B , 2016 , 30 ( 12 ):1650138.
QIN H , ZHU X , DAI Y . A proactive quantum secret sharing scheme based on GHZ state [J ] . Modern Physics Letters B , 2015 , 29 ( 27 ):1550165.
HE X L , YANG C P . Deterministic transfer of multi-qubit GHZ entangled states and quantum secret sharing between different cavityes [J ] . Quantum Information Processing , 2015 , 14 ( 12 ): 4461 - 4474 .
QIN H , DAI Y . Verifiable (t,n) threshold quantum secret sharing using d-dimensional Bellstate [J ] . Information Processing Letters , 2016 , 116 ( 5 ): 351 - 355 .
KEET A , FORTESCUE B , MARKHAM D , et al . Quantum sec-ret sharing with qudit graph states [J ] . Physical Review A , 2010 , 82 ( 6 ): 4229 - 4231 .
梁建武 , 程资 , 石金晶 , 等 . 基于量子图态的量子秘密共享 [J ] . 物理学报 . 2016 , 65 ( 16 ): 35 - 41 .
LIANG J W , CHEGN Z , SHI J J , et al . Quantum secret sharing based on quantum graph States [J ] . Acta Physica Sinica , 2016 , 65 ( 16 ): 35 - 41 .
KONDRACKI A . The Chinese remainder theorem [J ] . Formalized Mathematics , 1997 , 6 ( 4 ): 573 - 577 .
佟鑫 , 温巧燕 , 朱甫臣 . 基于 GHZ 态纠缠交换的量子秘密共享 [J ] . 北京邮电大学学报 . 2007 , 30 ( 1 ): 44 - 48 .
TONG X , WEN Q Y , ZHU F C . Quantum secret sharing based on GHZ state entanglement swapping [J ] . Journal of Beijing University of Posts and Telecommunications , 2007 , 30 ( 1 ): 44 - 48 .
0
浏览量
1057
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构