浏览全部资源
扫码关注微信
1. 国防科技大学计算机学院,湖南 长沙 410073
2. 北京邮电大学计算机学院,北京 100876
[ "全拥(1988-),男,湖南常德人,国防科技大学博士生,主要研究方向为在线社交网络分析、数据挖掘。" ]
[ "贾焰(1960-),女,四川成都人,博士,国防科技大学教授、博士生导师,主要研究方向为数据挖掘、大数据分析、信息安全等。" ]
[ "张良(1989-),男,江西九江人,国防科技大学博士生,主要研究方向为在线社交网络分析、数据挖掘。" ]
[ "朱争(1993-),男,四川攀枝花人,国防科技大学硕士生,主要研究方向为信息安全。" ]
[ "周斌(1971-),男,江西吉安人,博士,国防科技大学研究员、博士生导师,主要研究方向为数据挖掘、信息安全。" ]
[ "方滨兴(1960-),男,江西上饶人,博士,中国工程院院士,北京邮电大学教授、博士生导师,主要研究方向为计算机网络、信息安全、并行计算等。" ]
网络出版日期:2018-10,
纸质出版日期:2018-10-25
移动端阅览
全拥, 贾焰, 张良, 等. 在线社交网络个体影响力算法测试与性能评估[J]. 通信学报, 2018,39(10):1-10.
Yong QUAN, Yan JIA, Liang ZHANG, et al. Performance analysis and testing of personal influence algorithm in online social networks[J]. Journal on communications, 2018, 39(10): 1-10.
全拥, 贾焰, 张良, 等. 在线社交网络个体影响力算法测试与性能评估[J]. 通信学报, 2018,39(10):1-10. DOI: 10.11959/j.issn.1000-436x.2018217.
Yong QUAN, Yan JIA, Liang ZHANG, et al. Performance analysis and testing of personal influence algorithm in online social networks[J]. Journal on communications, 2018, 39(10): 1-10. DOI: 10.11959/j.issn.1000-436x.2018217.
社交影响力是驱动信息传播的关键因素,基于在线社交网络数据,可以对社交影响力进行建模和分析。针对一种经典的个体影响力计算方法,介绍了该算法的2种并行化实现,并在真实大规模在线社交网络数据集上进行了性能测试。结果表明,借助现有的大数据处理框架,显著提高了个体影响力计算方法在海量数据集中的计算效率,同时也给该类算法的研究和优化提供了实证依据。
Social influence is the key factor to drive information propagation in online social networks and can be modeled and analyzed with social networking data.As a kind of classical personal influence algorithm
two parallel implementation versions of a PageRank based method were introduced.Furthermore
extensive experiments were conducted on a large-scale real dataset to test the performance of these parallel methods in a distributed environment.The results demonstrate that the computational efficiency of the personal influence algorithm can be improved significantly in massive data sets by virtue of existing big data processing framework
and provide an empirical reference for the future research and optimization of the algorithm as well.
方滨兴 , 许进 , 李建华 . 在线社交网络分析 [M ] . 北京 : 电子工业出版社 , 2014 .
FANG B X , XU J , LI J H . Online social network analysis [M ] . Beijing : Publishing House of Electronics IndustryPress , 2014 .
CIALDINI R B . Influence:science and practice [M ] . Boston : Allyn and BaconPress , 2003 .
吴信东 , 李毅 , 李磊 . 在线社交网络影响力分析 [J ] . 计算机学报 , 2014 , 37 ( 4 ): 735 - 752 .
WU X D , LI Y , LI L . Influence analysis of online social networks [J ] . Chinese Journal of Computers , 2014 , 37 ( 4 ): 735 - 752 .
TING I H , CHANGP S , WANG S L . Understanding microblog users for social recommendation based on social networks analysis [J ] . Journal of Universal Computer Science , 2012 , 18 ( 4 ): 554 - 576 .
LI N , GILLET D . Identifying influential scholars in academic social media platforms [C ] // The 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining . 2013 : 608 - 614 .
VEGA-OLIVEROS D A , BERTON L , LOPES A D A , et al . Influence maximization based on the least in-fluential spreaders [C ] // The 1st International Conference on Social Influence Analysis . 2015 : 3 - 8 .
DINH T N , ZHANG H , NGUYEN D T , et al . Cost-effective viral marketing for time-critical campaigns in large-scale social networks [J ] . IEEE/ACM Transactions on Networking , 2014 , 22 ( 6 ): 2001 - 2011 .
KATZ E , LAZARSFELD P . Personal influence:the part played by people in the flow of mass communica-tions [M ] . New Jersey : Transaction PublishersPress , 1966 .
CHA M , HADDADI H , BENEVENUTO F , et al . Measuring user influence in twitter:the million follower fallacy [C ] // International Conference on Weblogs and Social Media . 2010 : 10 - 17 .
DING Z , JIA Y , ZHOU B , et al . Mining topical influencers based on the multi-relational network in microblogging sites [J ] . China Communications , 2013 , 10 ( 1 ): 93 - 104 .
WENG J , LIM E P , JIANG J , et al . TwitterRank:finding topic-sensitive influential twitterers [C ] // The third ACM International Conference on Web Search and Data Mining . 2010 : 261 - 270 .
TANG J , SUN J , WANG C , et al . Social influence anal-ysis in large-scale networks [C ] // The 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . 2009 : 807 - 816 .
LIU X , LI M , LI S , et al . IMGPU:GPU-accelerated influence maximization in large-scale social networks [J ] . IEEE Transactions on Parallel and distributed Systems , 2014 , 25 ( 1 ): 136 - 145 .
平宇 , 向阳 , 张波 , 等 . 基于MapReduce的并行PageRank算法实现 [J ] . 计算机工程 , 2014 , 40 ( 2 ): 31 - 34 .
PING Y , XIANG Y , ZHANG B , et al . Implementation of parallel PageRank algorithm [J ] . Computer Engineering Based on MapReduce , 2014 , 40 ( 2 ): 31 - 34 .
FREEMAN L C . Centrality in social networks conceptual clarification [J ] . Social Networks , 1978 , 1 ( 3 ): 215 - 239 .
NEWMAN M E J . A measure of betweenness centrality based on random walks [J ] . Social Networks , 2005 , 27 ( 1 ): 39 - 54 .
NEWMAN M E J . The structure and function of complex networks [J ] . SIAM Review , 2003 , 45 ( 2 ): 167 - 256 .
KITSAK M , GALLOS L K , HAVLIN S , et al . Identification of influential spreaders in complex networks [J ] . Nature Physics , 2010 , 6 ( 11 ): 888 - 893 .
PAGE L , BRIN S , MOTWANI R , et al . The pagerank citation ranking:bringing order to the web [J ] . Stanford Digital Libraries Working Paper , 1998 , 9 ( 1 ): 1 - 14 .
EFRON M . Information search and retrieval in microblogs [J ] . Journal of the American Society for Information Science and Technology , 2011 , 62 ( 6 ): 996 - 1008 .
HAVELIWALA T , KAMVAR A , JEH G . An analytical comparison of approaches to personalizing pagerank [R ] . Palo Alto:Stanford University , 2003 .
SONG X , CHI Y , HINO K , et al . Identifying opinion leaders in the blogosphere [C ] // The 6th ACM Conference on Information and Knowledge Management . 2007 : 971 - 974 .
0
浏览量
1051
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构