浏览全部资源
扫码关注微信
1. 贵州大学计算机科学与技术学院,贵州 贵阳 550025
2. 贵州省公共大数据重点实验室(贵州大学),贵州 贵阳 550025
3. 贵州大学密码学与数据安全研究所,贵州 贵阳 550025
[ "王缵(1992–),男,安徽安庆人,贵州大学硕士生,主要研究方向为信息安全、区块链应用与共识机制、机器学习。" ]
[ "田有亮(1982–),男,贵州盘县人,博士,贵州大学教授、博士生导师,主要研究方向为算法博弈论、密码学与安全协议、大数据安全与隐私保护等。" ]
[ "李秋贤(1992–),女,河南焦作人,贵州大学硕士生,主要研究方向为密码学与安全协议。" ]
[ "杨新欢(1993–),女,山西运城人,贵州大学硕士生,主要研究方向为信息安全、数据通信安全。" ]
网络出版日期:2018-08,
纸质出版日期:2018-08-25
移动端阅览
王缵, 田有亮, 李秋贤, 等. 基于信用模型的工作量证明算法[J]. 通信学报, 2018,39(8):185-198.
Zuan WANG, Youliang TIAN, Qiuxian LI, et al. Proof of work algorithm based on credit model[J]. Journal on communications, 2018, 39(8): 185-198.
王缵, 田有亮, 李秋贤, 等. 基于信用模型的工作量证明算法[J]. 通信学报, 2018,39(8):185-198. DOI: 10.11959/j.issn.1000-436x.2018138.
Zuan WANG, Youliang TIAN, Qiuxian LI, et al. Proof of work algorithm based on credit model[J]. Journal on communications, 2018, 39(8): 185-198. DOI: 10.11959/j.issn.1000-436x.2018138.
提出了一种基于信用模型的共识协议。首先,该共识协议借鉴了个人信用风险评估的思想,设计了一种基于BP神经网络的节点信用度模型。其次,构造了一种分片轮转模型,它可以根据节点的信用度高低分割搜索空间产生新区块,同时对协议所面临的可能攻击进行分析,修复了协议存在的漏洞。最后,仿真实验表明共识协议既能有效地降低新区块产生过程中重复计算的巨大资源消耗,也能抑制大型矿池的产生,使整个区块链系统变得更加安全可靠。
A consensus protocol based on the credit model was proposed.Firstly
the consensus agreement drew on the idea of personal credit risk assessment and a node credit model based on BP neural network was designed.Secondly
a piecewise rotation model was also constructed to segment the search space according to the node’s credit level to generate new blocks.At the same time
the possible attack of the protocol was analyzed and the vulnerability of this protocol was fixed.Finally
the simulation experiments show that the protocol not only effectively reduces the huge resource consumption in the process of new block generation
but also suppresses the generation of the large mine pool
making the whole blockchain system more secure and reliable.
NAKAMOTO S . Bitcoin:a peer-to-peer electronic cash system [J ] . Consulted , 2008 .
MCCONAGHY T , MARQUES R , MÜLLER A , et al . BigchainDB:a scalable blockchain database [R ] . White Paper,BigChainDB , 2016 .
ZYSKIND G , NATHAN O A . Decentralizing privacy:using blockchain to protect personal data [C ] // IEEE Security and Privacy Workshops . 2015 : 180 - 184 .
STOLZ D , WATTENHOFER R . Byzantine agreement with median validity [C ] // 19th International Conference on Priniciples of Distributed Systems (OPODIS) . 2015 .
CASTRO M , LISKOV B . Practical Byzantine fault tolerance and proactive recovery [J ] . ACM Transactions on Computer Systems , 2002 , 20 ( 4 ): 398 - 461 .
CASTRO M , LISKOV B . Practical byzantine fault tolerance [C ] // The Third Symposium on Operating Systems Design and Implementation . 1999 : 173 - 186 .
范捷 , 易乐天 , 舒继武 . 拜占庭系统技术研究综述 [J ] . 软件学报 , 2013 , 24 ( 6 ): 1346 - 1360 .
FAN J , YI L T , SHU J W . Research on the technologies of Byzantine system [J ] . Journal of Software , 2013 , 24 ( 6 ): 1346 - 1360 .
唐长兵 , 杨珍 , 郑忠龙 , 等 . PoW 共识算法中的博弈困境分析与优化 [J ] . 自动化学报 , 2017 , 43 ( 9 ): 1520 - 1531 .
TANG C B , YANG Z , ZHENG Z L , et al . Game dilemma analysis and optimization of PoW consensus algorithm [J ] . Acta Automatica Sinica , 2017 , 43 ( 9 ): 1520 - 1531 .
LAMPORT L . Paxos made simple [J ] . ACM Sigact News , 2001 , 32 ( 4 ): 18 - 25 .
KING S , NADAL S . PPCoin:peer-to-peer crypto-currency with proof-of-stake [J ] . 2001 .
LARIMER D . Delegated proof-of-stake [R ] . White Paper , 2014 .
BENTOV I , LEE C , MIZRAHI A , et al . Proof of activity:extending bitcoin0s proof of work via proof of stake [J ] . ACM Sigmetrics Performance Evaluation Review , 2014 , 42 ( 3 ): 34 - 37 .
ROSENFELD M . Analysis of bitcoin pooled mining reward systems [J ] . Computer Science , 2011 .
ANDREAS M . Antonopoulos.mastering bitcoin [M ] . O’Reilly Media , 2014 .
DING S F , JIA W K , SU C Y , et al . An improved BP neural network algorithm based on factor analysis [J ] . Journal of Convergence Information Technology , 2010 , 5 ( 4 ): 103 - 108 .
MA Y X , WANG S G . The application of artificial neural network in the forecasting on incidence of a disease [C ] // International Conference on Biomedical Engineering and Informatics . 2010 : 1269 - 1272 .
JIN W , LI Z J , WEI L S , et al . The improvements of BP neural network learning algorithm [C ] // International Conference on Signal Processing Proceedings . 2002 : 1647 - 1649 .
BERMAN P , GARAY J A , PERRY K J . Towards optimal distributed consensus [C ] // Symposium on Foundations of Computer Science . 1989 : 410 - 415 .
RAHBARI A N , OJHA U , ZHANG Z , et al . Incremental welfare consensus algorithm for cooperative distributed generation/demand response in smart grid [J ] . IEEE Transactions on Smart Grid , 2017 , 5 ( 6 ): 2836 - 2845 .
0
浏览量
1081
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构