浏览全部资源
扫码关注微信
浙江树人大学信息科技学院,浙江 杭州 310015
[ "王金铭(1978-),男,浙江富阳人,浙江树人大学副教授,主要研究方向为非线性信息处理、图像处理、压缩感知等。" ]
[ "叶时平(1967-),男,浙江丽水人,浙江树人大学教授,主要研究方向为图像处理、智能系统、地理信息系统等。" ]
[ "尉理哲(1983-),女,内蒙古呼伦贝尔人,浙江树人大学讲师,主要研究方向为车联网、WSN、深度学习等。" ]
[ "许森(1982-),男,湖北荆门人,浙江树人大学讲师,主要研究方向为人工智能、智能控制、物联网等。" ]
[ "蒋燕君(1973-),男,浙江诸暨人,博士,浙江树人大学教授,主要研究方向为智能电网、图像处理等。" ]
网络出版日期:2018-07,
纸质出版日期:2018-07-25
移动端阅览
王金铭, 叶时平, 尉理哲, 等. 半张量积压缩感知模型的快速重构方法[J]. 通信学报, 2018,39(7):26-38.
Jinming WANG, Shiping YE, Lizhe YU, et al. Fast reconstruction method for compressed sensing model with semi-tensor product[J]. Journal on communications, 2018, 39(7): 26-38.
王金铭, 叶时平, 尉理哲, 等. 半张量积压缩感知模型的快速重构方法[J]. 通信学报, 2018,39(7):26-38. DOI: 10.11959/j.issn.1000-436x.2018111.
Jinming WANG, Shiping YE, Lizhe YU, et al. Fast reconstruction method for compressed sensing model with semi-tensor product[J]. Journal on communications, 2018, 39(7): 26-38. DOI: 10.11959/j.issn.1000-436x.2018111.
为降低随机观测矩阵在压缩感知应用中所需的存储空间,提升大尺寸图像重构的实时性,提出一种半张量积压缩感知方法。利用该方法构建低阶随机观测矩阵,对原始信号进行全局采样,随后将测量值进行分组处理并采用l
q
-范数(0<q<1)迭代重加权方法进行重构。与传统压缩感知方法相比,所提方法既可成倍减小随机观测矩阵所需的存储空间,又可在保证图像重构质量的前提下,大大提升重构速度。验证实验利用了几种不同大小的随机观测矩阵对2维灰度图像进行了测试,比较其重构图像的峰值信噪比
和重构时间。测试结果表明,利用所提方法在保证重构精度的前提下,可大大减小随机观测矩阵所需的存储空间(当降低为传统方法的
<math xmlns="http://www.w3.org/1998/Math/MathML"> <mfrac> <mi>M</mi> <mi>t</mi> </mfrac> <mtext>×</mtext><mfrac> <mi>N</mi> <mi>t</mi> </mfrac> </math>
时,仍可得到与传统方法一致的重构质量),同时极大地提升重构的实时性,对于1024像素×1024像素大小的图像,其重构时间可提升近260倍。
To reduce the storage space of random measurement matrix and improve the reconstruction efficiency for compressed sensing (CS)
a new sampling approach for CS with semi-tensor product (STP-CS) was proposed.The proposed approach generated a low dimensional random measurement matrix to sample the sparse signals.Then the solutions of the sparse vector were estimated group by group with a l
q
-minimization (0&lt;q&lt;1) iteratively re-weighted least-squares (IRLS) algorithm.Compared with traditional compressed sensing methods
the proposed approach outperformed conventional CS in speed of reconstruction and that it also obtained comparable quality in the reconstruction.Numerical experiments were conducted using gray-scale images
the peak signal-to-noise ratio (PSNR) and the reconstruction time of the reconstruction images were compared with the random matrices with different dimensions.Comparisons were also conducted with other low storage techniques.Numerical experiment results show that the STP-CS can effectively reduce the storage space of the random measurement matrix to
<math xmlns="http://www.w3.org/1998/Math/MathML"> <mfrac> <mi>M</mi> <mi>t</mi> </mfrac> <mtext>×</mtext><mfrac> <mi>N</mi> <mi>t</mi> </mfrac> </math>
and decrease tow orders of magnitude of time that for conventional CS
while maintaining the reconstruction quality.Numerical results also show that the reconstruction time can be effectively improved 260 for the image size of 1 024×1 024.
DONOHO D L . Compressed sensing [J ] . IEEE Transactions on Information Theory , 2006 , 52 ( 4 ): 1289 - 1306 .
CANDÈS E J , ROMBERG J , TAO T . Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information [J ] . IEEE Transactions on Information Theory , 2006 , 52 ( 2 ): 489 - 509 .
CANDÈS E J , ROMBERG J K , TAO T . Stable signal recovery from incomplete and inaccurate measurements [J ] . Communications on Pure and Applied Mathematics , 2006 , 59 ( 8 ): 1207 - 1223 .
DAUBECHIES I , DEVORE R , FORNASIER M , et al . Iteratively reweighted least squares minimization for sparse recovery [J ] . Communications on Pure and Applied Mathematics , 2010 , 63 ( 1 ): 1 - 38 .
程晓良 , 郑璇 , 韩渭敏 . 求解欠定线性方程组稀疏解的算法 [J ] . 高校应用数学学报 , 2013 , 28 ( 2 ): 235 - 248 .
CHENG X L , ZHENG X , HAN W M . Algorithms on the sparse solution of under-determined linear systems [J ] . Applied Mathematics A Journal of Chinese Universities , 2013 , 28 ( 2 ): 235 - 248 .
ABOLGHASEMI V , FERDOWSI S , SANEI S . A block-wise random sampling approach:compressed sensing problem [J ] . Journal of AI and Data Mining , 2015 , 3 ( 1 ): 93 - 100 .
WANG J , ZHANG J , WANG W , et al . A perturbation analysis of nonconvex block-sparse compressed sensing [J ] . Communications in Nonlinear Science & Numerical Simulation , 2015 , 29 ( 1-3 ): 416 - 426 .
付宁 , 乔立岩 , 曹离然 . 面向压缩感知的块稀疏度自适应迭代算法 [J ] . 电子学报 , 2011 , 39 ( 3A ): 75 - 79 .
FU N , QIAO L Y , CAO L R . Block sparsity adaptive iteration algorithm for compressed sensing [J ] . Acta Electronica Sinica , 2011 , 39 ( 3A ): 75 - 79 .
DUARTE M F , BARANIUK R G . Kronecker compressive sensing [J ] . IEEE Transactions on Image Processing , 2012 , 21 ( 2 ): 494 - 504 .
ZHANG B J , TONG X , WANG W , et al . The research of Kronecker product-based measurement matrix of compressive sensing [J ] . EURASIP Journal on Wireless Communications and Networking , 2013 , 2013 ( 1 ): 1 - 5 .
胡晓伟 , 童宁宁 , 何兴宇 , 等 . 基于 Kronecker 压缩感知的宽带MIMO 雷达高分辨三维成像 [J ] . 电子与信息学报 , 2016 , 38 ( 6 ): 1475 - 1481 .
HU X W , TONG N N , HE X Y , et al . High-resolution 3D image via wideband MIMO radar based on kronecker compressive sensing [J ] . Journal of Electronics & Information Technology , 2016 , 38 ( 6 ): 1475 - 1481 .
DO T T , GAN L , NGUYEN N H , et al . Fast and efficient compressive sensing using structurally random matrices [J ] . IEEE Transactions on Signal Processing , 2012 , 60 ( 1 ): 139 - 154 .
HAIMI-COHEN R , MARK L Y . Compressive measurements generated by structurally random matrices [J ] . Signal Processing , 2016 , 120 ( C ): 71 - 87 .
OTAZO R , CANDÈS E , SODICKSON D K . Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components [J ] . Magnetic Resonance in Medicine , 2015 , 73 ( 3 ): 1125 - 1136 .
CAI T T , ZHANG A R . Sparse representation of a polytope and recovery of sparse signals and low-rank matrices [J ] . IEEE Transactions on Information Theory , 2014 , 60 ( 1 ): 122 - 132 .
朱志臻 , 周崇彬 , 刘发林 , 等 . 用于压缩感知的二值化测量矩阵 [J ] . 微波学报 , 2014 , 30 ( 2 ): 79 - 83
ZHU Z Z , ZHOU C B , LIU F L , et al . Binarized measurement matrix for compressive sensing [J ] . Journal of Microwaves , 2014 , 30 ( 2 ): 79 - 83 .
王侠 , 王开 , 王青云 , 等 . 压缩感知中的确定性随机观测矩阵构造 [J ] . 信号处理 , 2014 , 30 ( 4 ): 436 - 442 .
WANG X , WANG K , WANG Q Y , et al . Deterministic random measurement matrices construction for compressed sensing [J ] . Journal of Signal Processing , 2014 , 30 ( 4 ): 463 - 442 .
TROPP J A , GILBERT A C . Signal recovery from random measurements via orthogonal matching pursuit [J ] . IEEE Transactions on Information Theory , 2007 , 53 ( 12 ): 4655 - 4666 .
董博 , 姚治海 , 李喆 , 等 . 压缩感知OMP算法与IRLS算法在计算鬼成像中的对比分析 [J ] . 长春理工大学学报(自然科学版) , 2016 , 2016 ( 1 ): 21 - 27 .
DONG B , YAO Z H , LI Z , et al . Contrast analysis of compressive sensing OMP and IRLS algorithm in the computational ghost imaging [J ] . Journal of Changchun University of Science and Technology (Natural Science Edition) , 2016 , 2016 ( 1 ): 21 - 27 .
CHEN D Z , QI H S , LI Z Q . Analysis and control of boolean networks:a semi-tensor product approach [M ] . Springer , 2011 .
0
浏览量
1247
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构