浏览全部资源
扫码关注微信
1. 西北工业大学航海学院,陕西 西安 710072
2. 西北工业大学海洋声学信息感知工业和信息化部重点实验室,陕西 西安 710072
3. 厦门大学水声通信与海洋信息技术教育部重点实验室,福建 厦门 361005
[ "伍飞云(1984-),男,江西宜春人,西北工业大学助理教授,主要研究方向为信号处理、压缩感知、水声通信等。" ]
[ "杨坤德(1974-),男,四川邻水人,西北工业大学教授、博士生导师,主要研究方向为信号处理、压缩感知、微波传输等。" ]
[ "童峰(1973-),男,福建龙岩人,厦门大学教授、博士生导师,主要研究方向为水声通信、水声网络、水声信号处理等。" ]
网络出版日期:2018-06,
纸质出版日期:2018-06-25
移动端阅览
伍飞云, 杨坤德, 童峰. 部分范数约束的稀疏恢复算法及其在单载波水声数据遥测中的应用[J]. 通信学报, 2018,39(6):127-132.
Feiyun WU, Kunde YANG, Feng TONG. Partial-norm-constrained sparse recovery algorithm and its application on single carrier underwater-acoustic-data telemetry[J]. Journal on communications, 2018, 39(6): 127-132.
伍飞云, 杨坤德, 童峰. 部分范数约束的稀疏恢复算法及其在单载波水声数据遥测中的应用[J]. 通信学报, 2018,39(6):127-132. DOI: 10.11959/j.issn.1000-436x.2018099.
Feiyun WU, Kunde YANG, Feng TONG. Partial-norm-constrained sparse recovery algorithm and its application on single carrier underwater-acoustic-data telemetry[J]. Journal on communications, 2018, 39(6): 127-132. DOI: 10.11959/j.issn.1000-436x.2018099.
对于单载波水声数据压缩与恢复问题,压缩感知能以较低能耗获得信号压缩与恢复效果。但压缩感知核心目标是直接求最小l
0
范数,该问题表现为NP难问题,因此,常将其转化为求l
1
范数约束最小化问题,而求l
1
范数约束最小化的稀疏解精度有限。基于此,推导出基于部分范数约束的稀疏信号恢复算法,该算法通过部分范数约束在拉格朗日求解中增加一个零吸引项,从而动态分配稀疏抽头的软阈值。同时,该算法用于实际海上数据的遥测,结合离散余弦变换(DCT),可将单载波水声数据恢复精度提高。
To solve the problem of single carrier underwater-acoustic-data telemetry
compressive sensing (CS) provides competitive performance of compression and recovery with low energy consumption.The primary objective of CS is to minimize the l
0
norm
which is an NP hard problem.Hence
the common methods were transferred to minimize l
1
norm.However
l
1
norm minimization provided a limited accuracy.A partial-norm-constraint (PNC) based sparse signal recovery method was derived
which adopted PNC as a zero attraction in a Lagrange method
to distribute the soft threshold for the non-zero taps.The prop
osed method is used for at-sea data telemetry.Combining with DCT
the proposed method improves the recovery accuracy.
CLIMENT S , SANCHEZ A , CAPELLA J V , et al . Underwater acoustic wireless sensor networks:advances and future trends in physical,MAC and routing layers [J ] . Sensors , 2014 , 14 ( 1 ): 795 - 833 .
HEIDEMANN J , YE W , WILLS J , et al . Research challenges and applications for underwater sensor networking [C ] // Wireless Communications and NETWORKING Conference . 2006 : 228 - 235 .
HEIDEMANN J , STOJANOVIC M , ZORZI M . Underwater sensor networks:applications,advances and challenges [J ] . Philosophical Transactions , 2012 , 370 ( 1958 ): 158 - 175 .
ZHUO J , ZHANG Y , LIU X H , et al . An underwater acoustic data compression method using improved threshold integer wavelet and LZW algorithm [J ] . Technical Acoustics , 2015 , 34 : 115 - 120 .
MAMAGHANIAN H , KHALED N , ATIENZA D , et al . Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes [J ] . IEEE Transactions on Biomedical Engineering , 2011 , 58 ( 9 ): 2456 - 2466 .
DONOHO D L . Compressed sensing [J ] . IEEE Transactions on Information Theory , 2006 , 52 ( 4 ): 1289 - 1306 .
DONOHO D L , ELAD M , TEMLYAKOV V N . Stable recovery of sparse overcomplete representations in the presence of noise [J ] . IEEE Transactions on Information Theory , 2006 , 52 ( 1 ): 6 - 18 .
BENESTY J , PALEOLOGU C , CIOCHINA S . Proportionate adaptive filters from a basis pursuit perspective [J ] . IEEE Signal Processing Letters , 2010 , 17 ( 12 ): 985 - 988 .
WRIGHT S J , NOWAK R D , FIGUEIREDO M A T . Sparse reconstruction by separable approximation [J ] . IEEE Transactions on Signal Processing , 2009 , 57 ( 7 ): 2479 - 2493 .
BLUMENSATH T . Accelerated iterative hard thresholding [J ] . Signal Processing , 2012 , 92 ( 3 ): 752 - 756 .
MALLAT S G , ZHANG Z . Matching pursuits with time-frequency dictionaries [J ] . IEEE Transactions on Signal Processing , 1993 , 41 ( 12 ): 3397 - 3415 .
TROPP J A , GILBERT A C . Signal recovery from random measurements via orthogonal matching pursuit [J ] . IEEE Transactions on Information Theory , 2007 , 53 ( 12 ): 4655 - 4666 .
WU F Y , TONG F . Non-uniform norm constraint LMS algorithm for sparse system identification [J ] . IEEE Communications Letters , 2013 , 17 ( 2 ): 385 - 388 .
LI Y , WANG Y , JIANG T . Norm-adaption penalized least mean square/fourth algorithm for sparse channel estimation [J ] . Signal Processing , 2016 , 128 ( C ): 243 - 251 .
WANG C , ZHANG Y , WEI Y , et al . A new $l_0$-LMS algorithm with adaptive zero attractor [J ] . IEEE Communications Letters , 2015 , 19 ( 12 ): 2150 - 2153 .
WU F Y , TONG F . Mean-square analysis of the gradient projection sparse recovery algorithm based on non-uniform norm [J ] . Neurocomputing , 2017 , 223 : 103 - 106 .
SARTIPI M , FLETCHER R . Energy-efficient data acquisition in wireless sensor networks using compressed sensing [C ] // Data Compression Conference . 2011 : 223 - 232 .
0
浏览量
907
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构