浏览全部资源
扫码关注微信
西安电子科技大学计算机学院,陕西 西安 710071
[ "吕韵秋(1994-),女,江苏徐州人,西安电子科技大学硕士生,主要研究方向为目标跟踪、机器学习。" ]
[ "刘凯(1977-),男,陕西西安人,博士,西安电子科技大学教授,主要研究方向为图像编码、FPGA/嵌入式片上系统。" ]
[ "程飞(1985-),男,陕西宝鸡人,博士,西安电子科技大学讲师,主要研究方向为机器学习、目标跟踪。" ]
网络出版日期:2018-06,
纸质出版日期:2018-06-25
移动端阅览
吕韵秋, 刘凯, 程飞. 基于点轨迹的核相关滤波器跟踪算法[J]. 通信学报, 2018,39(6):190-198.
Yunqiu LYU, Kai LIU, Fei CHENG. Kernelized correlation tracking based on point trajectories[J]. Journal on communications, 2018, 39(6): 190-198.
吕韵秋, 刘凯, 程飞. 基于点轨迹的核相关滤波器跟踪算法[J]. 通信学报, 2018,39(6):190-198. DOI: 10.11959/j.issn.1000-436x.2018097.
Yunqiu LYU, Kai LIU, Fei CHENG. Kernelized correlation tracking based on point trajectories[J]. Journal on communications, 2018, 39(6): 190-198. DOI: 10.11959/j.issn.1000-436x.2018097.
视频跟踪是计算机视觉领域的重要研究方向之一。然而,目标跟踪过程中的遮挡问题会导致视频中目标信息的缺失,因此许多算法无法稳定地跟踪目标。针对遮挡问题,提出一种基于点轨迹的核相关滤波器跟踪算法。通过对目标及其周围物体长期运动轨迹的估计,使用谱聚类对点轨迹进行标记,以区分目标区域与背景区域,从而判断目标是否发生遮挡或漂移,决定是否启用重检测机制对目标进行检测。实验证明,该方法对遮挡和漂移问题具有较强的顽健性。
Visual tracking is one of the most important directions in computer vision.However
many state-of-the-art algorithms cannot track the interested object reliably due to occlusion during tracking process
which leads to deficiency of object information.In order to solve occlusion problem
a kernelized correlation tracking method based on point trajectories was proposed.Through analyzing long-term motion cues of the local information
point trajectories were labeled by spectral clustering.These labeled points were used to differentiate the foreground and background objects and thus detect whether the target was occluded or drifts.If drifting and occlusion occur
re-detection was used to detect the re-entering of the target.Experimental results show that the proposed algorithm can handle occlusion and drifting problems effectively.
ROSS D A , LIM J , LIN R S , et al . Incremental learning for robust visual tracking [J ] . International Journal of Computer Vision , 2008 , 77 ( 1 ): 125 - 141 .
MEI X , LING H . Robust visual tracking and vehicle classification via sparse representation [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2011 , 33 ( 11 ): 2259 - 2272 .
LI H , SHEN C , SHI Q . Real-time visual tracking using compressive sensing [C ] // 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . 2011 : 1305 - 1312 .
BABENKO B , YANG M H , BELONGIE S . Visual tracking with online multiple instance learning [C ] // 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . 2009 : 983 - 990 .
KALAL Z , MIKOLAJCZYK K , MATAS J . Tracking-learning-detection [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2012 , 34 ( 7 ): 1409 - 1422 .
HARE S , GOLODETZ S , SAFFARI A , et al . Struck:structured output tracking with kernels [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2016 , 38 ( 10 ): 2096 - 2109 .
BOLME D S , BEVERIDGE J R , DRAPER B A , et al . Visual object tracking using adaptive correlation filters [C ] // 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . 2010 : 2544 - 2550 .
HENRIQUES J , CASEIRO R , MARTINS P , et al . Exploiting the circulant structure of tracking-by-detection with kernels [C ] // European Conference on Computer Vision (ECCV) . 2012 : 702 - 715 .
HENRIQUES J F , CASEIRO R , MARTINS P , et al . High-speed tracking with kernelized correlation filters [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2015 , 37 ( 3 ): 583 - 596 .
SHU G , DEHGHAN A , OREIFEJ O , et al . Part-based multiple-person tracking with partial occlusion handling [C ] // 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . 2012 : 1815 - 1821 .
YANG B , NEVATIA R . Online learned discriminative part-based appearance models for multi-human tracking [C ] // European Conference on Computer Vision (ECCV) . 2012 : 484 - 498 .
YAO R , SHI Q , SHEN C , et al . Part-based visual tracking with online latent structural learning [C ] // 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . 2013 : 2363 - 2370 .
NGUYEN H T , WORRING M , VAN D B R . Occlusion robust adaptive template tracking [C ] // 2001 IEEE International Conference on Computer Vision(ICCV) . 2001 : 678 - 683 .
WENG S K , KUO C M , TU S K . Video object tracking using adaptive Kalman filter [J ] . Journal of Visual Communication and Image Representation , 2006 , 17 ( 6 ): 1190 - 1208 .
BREITENSTEIN M D , REICHLIN F , LEIBE B , et al . Robust tracking-by-detection using a detector confidence particle filter [C ] // 2009 IEEE 12th International Conference on Computer Vision (ICCV) . 2009 : 1515 - 1522 .
BROX T , MALIK J . Large displacement optical flow:descriptor matching in variational motion estimation [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2011 , 33 ( 3 ): 500 - 513 .
BAKER S , MATTHEWS I . Lucas-kanade 20 years on:a unifying framework [J ] . International Journal of Computer Vision , 2004 , 56 ( 3 ): 221 - 255 .
VON LUXBURG U . A tutorial on spectral clustering [J ] . Statistics and Computing , 2007 , 17 ( 4 ): 395 - 416 .
BROX T , MALIK J . Object segmentation by long term analysis of point trajectories [C ] // European Conference on Computer Vision (ECCV) . 2010 : 282 - 295 .
OCHS P , MALIK J , BROX T . Segmentation of moving objects by long term video analysis [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2014 , 36 ( 6 ): 1187 - 1200 .
WU Y , LIM J , YANG M H . Online object tracking:a benchmark [C ] // 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . 2013 : 2411 - 2418 .
MUELLER M , SMITH N , GHANEM B . A benchmark and simulator for UAV tracking [C ] // European Conference on Computer Vision (ECCV) . 2016 : 445 - 461 .
PAUWELS K , VAN HULLE M M . Realtime phase-based optical flow on the GPU [C ] // 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) . 2008 : 1 - 8 .
KROEGER T , TIMOFTE R , DAI D , et al . Fast optical flow using dense inverse search [C ] // European Conference on Computer Vision (ECCV) . 2016 : 471 - 488 .
YAN D , HUANG L , JORDAN M I . Fast approximate spectral clustering [C ] // The 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . 2009 : 907 - 916 .
NAUMOV M , MOON T . Parallel spectral graph partitioning [R ] . NVIDIA Technical Report,NVR-2016-001 , 2016 .
0
浏览量
946
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构