浏览全部资源
扫码关注微信
1. 辽宁科技学院工程实践中心,辽宁 本溪 117004
2. 东北大学计算机科学与工程学院,辽宁 沈阳 110004
[ "田鹤(1985-),女,辽宁沈阳人,辽宁科技学院讲师,主要研究方向为计算机网络、复杂网络。" ]
[ "赵海(1959-),男,辽宁沈阳人,博士,东北大学教授、博士生导师,主要研究方向为复杂网络、嵌入式系统、普适计算等。" ]
[ "王进法(1988-),男,山东德州人,东北大学博士生,主要研究方向为互联网拓扑分析、数据融合。" ]
[ "林川(1988-),男,辽宁凤城人,东北大学博士生,主要研究方向为复杂网络、软件定义网络。" ]
网络出版日期:2018-06,
纸质出版日期:2018-06-25
移动端阅览
田鹤, 赵海, 王进法, 等. 互联网传播行为的时序演化与预测[J]. 通信学报, 2018,39(6):116-126.
He TIAN, Hai ZHAO, Jinfa WANG, et al. Timing evolution and prediction of Internet transmission behavior[J]. Journal on communications, 2018, 39(6): 116-126.
田鹤, 赵海, 王进法, 等. 互联网传播行为的时序演化与预测[J]. 通信学报, 2018,39(6):116-126. DOI: 10.11959/j.issn.1000-436x.2018096.
He TIAN, Hai ZHAO, Jinfa WANG, et al. Timing evolution and prediction of Internet transmission behavior[J]. Journal on communications, 2018, 39(6): 116-126. DOI: 10.11959/j.issn.1000-436x.2018096.
互联网的传播行为对研究网络拓扑结构和动态行为的关系具有重要作用。选取CAIDA_Ark项目下不同地区4个监测点的有效路径样本数据,统计网络访问时间与访问直径,发现它们的相关性极弱,网络访问时间呈多峰重尾分布。采用非线性时间序列分析方法对网络访问时间演化序列混沌辨析,结果表明其时序演化具有混沌特征。在此基础上,引入 Logistic 方程建立网络传播行为预测模型,并用粒子群优化算法对模型参数取优,用 4个监测点的网络访问时间序列对模型进行实验,从准确性和可用性这2个方面对模型进行评价,结果表明,短期内该模型能够对网络传播行为做出准确预测,在一段时期内,可作为网络行为演化预测的工具。
The transmission behavior of Internet plays an importance role in the research on the relationship between network topology structure and dynamic behavior.Selecting effective path samples in four monitoring points which from different regions authorized by CAIDA_Ark project and statistics network traveling time and traveling diameter
their correlation is very weak
network traveling time is presented on multi-peak and heavy tail distribution.Using nonlinear time sequences analysis method to identify the Chaos characteristics of network traveling time evolution sequences.The results show that their timing evolution has Chaos characteristics.Based on this
the Logistic equation was lead to establish network transmission behavior prediction model
and particle swarm optimization (PSO) was used to optimize model parameters.The model by the network traveling time sequences of four monitoring points was experimented
evaluated it from accuracy and availability
the results show that the model can predict network transmission behavior accurately in the short term.It can be used as a tool for predicting the network behaviors’ evolution in a period of time.
YOOK S H , JEONG H , BARABASI A L . Modeling the Internet’s large-scale topology [J ] . Proceedings of the National Academy of Sciences , 2002 , 99 ( 21 ): 13382 - 13386 .
PASTOR-SATORRAS R , VESPIGNANI A . Evolution and structure of the Internet:a statistical physics approach [M ] . Cambridge : Cambridge University Press , 2007 .
KROGFOSS B , WELDON M , SOFMAN L . Internet architecture evolution and the complex economies of content peering [J ] . Bell Labs Technical Journal , 2012 , 17 ( 1 ): 163 - 184 .
DING W , YAN Z , DENG R H . A survey on future Internet security architectures [J ] . IEEE Access , 2016 , 4 : 4374 - 4393 .
除久强 , 王进法 , 张君 , 等 . 基于度相关性病毒传播模型及其分析 [J ] . 中国科学:信息科学 , 2014 , 44 ( 6 ): 793 - 810 .
XU J Q , WANG J F , ZHANG J , et al . Virus spreading model based on degree correlation and its analysis [J ] . Scientia Sinica Informations , 2014 , 44 ( 6 ): 793 - 810 .
ZHANG S , ZHAO H . Community identification in networks with unbalanced structure [J ] . Physical Review E , 2012 , 337 ( 6092 ): 337 - 341 .
WANG P , AKYILDIZ I F . Improving network connectivity in the presence of heavy-tailed interference [J ] . IEEE Transactions on Wireless Communications , 2014 , 13 ( 10 ): 5427 - 5439 .
徐野 , 赵海 , 苏威积 , 等 . Internet 网络的访问直径分析 [J ] . 计算机学报 , 2006 , 5 ( 29 ): 690 - 698 .
XU Y , ZHAO H , SU W J , et al . Analysis on traveling diameter of Internet [J ] . Chinese Journal of Computers , 2006 , 5 ( 29 ): 690 - 698 .
隋岩 , 曹飞 . 从混沌理论认识互联网群体传播特性 [J ] . 学术界 , 2013 ( 2 ): 86 - 94 .
SU Y , CAO F . Study on features of Internet group communication by chaos theory [J ] . Condensed Paper , 2013 ( 2 ): 86 - 94 .
YE Z , MISTRY S , BOUGUETTAYA A , et al . Long-term QoS-aware cloud service composition using multivariate time series analysis [J ] . IEEE Transactions on Services Computing , 2016 , 9 ( 3 ): 1 .
CHAI S H , LIM J S . Forecasting business cycle with chaotic time series based on neural network with weighted fuzzy membership functions [J ] . Chaos Solitons & Fractals , 2016 , 90 : 118 - 126 .
林川 , 赵海 , 毕远国 , 等 . 互联网网络时延特征研究 [J ] . 通信学报 , 2015 , 36 ( 3 ): 163 - 174 .
LIN C , ZHAO H , BI Y G , et al . Research on network delay of Internet [J ] . Journal on Communications , 2015 , 36 ( 3 ): 163 - 174 .
HUFFAKER B , FOMENKOV M , PLUMMER D J , et al . Distance metrics in the Internet [J ] . IEEE International Telecommunications Symposium , 2002 : 200 - 202 .
王光义 , 袁方 . 级联混沌及其动力学特性研究 [J ] . 物理学报 , 2013 , 62 ( 2 ): 020506 .
WANG G Y , YUAN F . Cascade Chaos and its dynamic characteristics [J ] . Acta Physica Sinica , 2013 , 62 ( 2 ): 020506 .
张春涛 , 马千里 , 彭宏 . 基于信息熵优化相空间重构参数的混沌时间序列预测 [J ] . 物理学报 , 2010 , 59 ( 11 ): 7623 - 7629 .
ZHANG C T , MA Q L , PENG H . Chaotic time series prediction based on information entropy optimized parameters of phase space reconstruction [J ] . Acta Physica Sinica , 2010 , 59 ( 11 ): 7623 - 7629 .
侯站 . 基于预测的相空间重构技术研究 [D ] . 郑州:郑州大学 , 2010 .
HOU Z . Research on phase space reconstruction based on prediction [D ] . Zhengzhou:Zhengzhou University , 2010 .
GRASSBERGER P , PROCACCIA I . Measuring the strangeness of strange attractors [J ] . Physica D , 1983 , 9 ( 1,2 ): 189 - 208 .
JOVIC B , UNSWORTH C P . Fast synchronization of chaotic maps for secure chaotic communications [J ] . Electronics Letters , 2010 , 46 ( 1 ): 49 - 50 .
DENNEDY J , EBERHART R C . Particle swarm optimization [C ] // The IEEE International Conference on Neural Networks . 1995 : 1942 - 1948 .
0
浏览量
1057
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构