浏览全部资源
扫码关注微信
上海交通大学电子信息与电气工程学院,上海 200240
[ "贾维嘉(1957-),男,河北承德人,博士,上海交通大学致远讲席教授,主要研究方向为人机物融合、多播、选播、路由、移动多媒体通信、分布式系统等。" ]
[ "周小杰(1994-),男,广东梅州人,上海交通大学硕士生,主要研究方向为数据中心、雾计算、资源调度等。" ]
网络出版日期:2018-05,
纸质出版日期:2018-05-25
移动端阅览
贾维嘉, 周小杰. 雾计算的概念、相关研究与应用[J]. 通信学报, 2018,39(5):153-165.
Weijia JIA, Xiaojie ZHOU. Concepts,issues,and applications of fog computing[J]. Journal on communications, 2018, 39(5): 153-165.
贾维嘉, 周小杰. 雾计算的概念、相关研究与应用[J]. 通信学报, 2018,39(5):153-165. DOI: 10.11959/j.issn.1000-436x.2018086.
Weijia JIA, Xiaojie ZHOU. Concepts,issues,and applications of fog computing[J]. Journal on communications, 2018, 39(5): 153-165. DOI: 10.11959/j.issn.1000-436x.2018086.
首先,系统地分析和总结了雾计算的研究现状,重点介绍了雾计算出现的背景及其相对于云计算的优势,对雾计算及其他相似的计算模式进行比较,指出了雾计算相比于传统计算模式的优点。然后,总结了雾计算的体系结构与各层功能。同时,对于雾计算在网络管理和资源调度这2个方面的研究问题展开讨论,总结了前人提出的解决方法并指出了现有方法的不足。最后,对于雾计算的一些相关应用进行了阐述,并以智能驾驶、工业物联网这2个示范应用为例指出了当前雾计算在实际应用上仍需攻关的重要课题。
Firstly
the previous work of fog computing was systematically analyzed and summarized.The background of fog computing and the comparison with cloud computing were introduced.Besides
based on the comparison with other computing style
the advantages and characteristics of fog computing were explained.In addition
the architecture of fog computing was described.Moreover
network management and resource scheduling of fog computing were discussed
where the related previous work were summarized and analyzed.At last
the applications of fog computing were described.Taking the intelligent driving and industrial Internet of things applications as examples
the key research issues of fog computing were proposed.
ARMBRUST M , FOX A , GRIFFITH R , et al . A view of cloud computing [J ] . Communications of the ACM , 2010 , 53 ( 4 ): 50 - 58 .
BONOMI F , MILITO R , ZHU J , et al . Fog computing and its role in the internet of things [C ] // Edition of the Mcc Workshop on Mobile Cloud Computing . 2012 : 13 - 16 .
HASHIZUME K , ROSADO D G , FERNÁNDEZ-MEDINA E , et al . An analysis of security issues for cloud computing [J ] . Journal of Internet Services and Applications , 2013 , 4 ( 1 ): 5 .
STOJMENOVIC I , WEN S . The fog computing paradigm:scenarios and security issues [C ] // Federated Conference on Computer Science and Information Systems . 2014 : 1 - 8 .
HOU X , LI Y , CHEN M , et al . Vehicular fog computing:a viewpoint of vehicles as the infrastructures [J ] . IEEE Transactions on Vehicular Technology , 2016 , 65 ( 6 ): 3860 - 3873 .
PENG M , YAN S , ZHANG K , et al . Fog-computing-based radio access networks:issues and challenges [J ] . IEEE Network , 2015 , 30 ( 4 ): 46 - 53 .
LU R , ZHU H , LIU X , et al . Toward efficient and privacy-preserving computing in big data era [J ] . IEEE Network , 2014 , 28 ( 4 ): 46 - 50 .
BONOMI F , . Connected vehicles,the internet of things,and fog computing [C ] // The Eighth ACM International Workshop on Vehicular Inter-Networking (VANET) . 2011 : 13 - 15 .
VAQUERO L M , RODERO-MERINO L . Finding your way in the fog [J ] . ACM SIGCOMM Computer Communication Review , 2014 , 44 ( 5 ): 27 - 32 .
FERNANDO N , SENG W L , RAHAYU W . Mobile cloud computing:a survey [J ] . Future Generation Computer Systems , 2013 , 29 ( 1 ): 84 - 106 .
DINH H T , LEE C , NIYATO D , et al . A survey of mobile cloud computing:architecture,applications,and approaches [J ] . Wireless Communications & Mobile Computing , 2013 , 13 ( 18 ): 1587 - 1611 .
DAVIS A , PARIKH J , WEIHL W E . Edge computing:extending enterprise applications to the edge of the internet [C ] // International Conference on World Wide Web-Alternate Track Papers & Posters . 2004 : 180 - 187 .
DENG R , LU R , LAI C , et al . Optimal workload allocation in fog-cloud computing toward balanced delay and power consumption [J ] . IEEE Internet of Things Journal , 2017 , 3 ( 6 ): 1171 - 1181 .
YI S , HAO Z , QIN Z , et al . Fog computing:platform and applications [C ] // Hot Topics in Web Systems and Technologies . 2015 : 73 - 78 .
FIRDHOUS M , GHAZALI O , HASSAN S , et al . Fog computing:will it be the future of cloud computing? [C ] // International Conference on Informatics & Applications . 2014 : 1 - 8 .
LUAN T H , GAO L , LI Z , et al . Fog computing:focusing on mobile users at the edge [J ] . arXiv Preprint,arXiv:1502.01815 , 2015 .
LI J , JIN J , YUAN D , et al . EHOPES:data-centered fog platform for smart living [C ] // Telecommunication Networks and Applications Conference . 2015 : 308 - 313 .
HAJIBABA M , GORGIN S . A review on modern distributed computing paradigms:cloud computing,jungle computing and fog computing [J ] . Journal of Computing & Information Technology , 2014 , 22 ( 2 ): 69 .
SATYANARAYANAN M . Fundamental challenges in mobile computing [J ] . ACM Symposium on Principles of Distributed Computing , 1996 : 1 - 7 .
LI W , ZHAO Y , LU S , et al . Mechanisms and challenges on mobility-augmented service provisioning for mobile cloud computing [J ] . IEEE Communications Magazine , 2015 , 53 ( 3 ): 89 - 97 .
TULI A , HASTEER N , SHARMA M , et al . Exploring challenges in mobile cloud computing:an overview [C ] // Confluence 2013:the Next Generation Information Technology Summit . 2013 : 496 - 501 .
NISHIO T , SHINKUMA R , TAKAHASHI T , et al . Service-oriented heterogeneous resource sharing for optimizing service latency in mobile cloud [C ] // International Workshop on Mobile Cloud Computing &NETWORKING . 2013 : 19 - 26 .
BITTENCOURT L F , LOPES M M , PETRI I , et al . Towards virtual machine migration in fog computing [C ] // International Conference on P2P,Parallel,Grid,Cloud and Internet Computing . 2015 : 1 - 8 .
SHI W , CAO J , ZHANG Q , et al . Edge computing:vision and challenges [J ] . IEEE Internet of Things Journal , 2016 , 3 ( 5 ): 637 - 646 .
CHURCH K , GREENBERG A , HAMILTON J . On delivering embarrassingly distributed cloud services [C ] // Hotnets . 2008 : 55 - 60 .
GU C , LIU C , ZHANG J , et al . Green scheduling for cloud data centers using renewable resources [J ] . Proceedings-IEEE INFOCOM , 2015 , 2015 : 354 - 359 .
SATYANARAYANAN M , BAHL P , CACERES R , et al . The case for VM-based cloudlets in mobile computing [J ] . IEEE Pervasive Computing , 2009 , 8 ( 4 ): 14 - 23 .
YANNUZZI M , MILITO R , SERRAL-GRACIA R , et al . Key ingredients in an IoT recipe:fog computing,cloud computing,and more fog computing [C ] // IEEE International Workshop on Computer Aided Modeling and Design of Communication Links and Networks . 2014 : 325 - 329 .
LUAN T H , CAI L X , CHEN J , et al . VTube:towards the media rich city life with autonomous vehicular content distribution [C ] // Sensor,Mesh and Ad Hoc Communications and Networks . 2011 : 359 - 367 .
GARCIA L P , MONTRESOR A , EPEMA D , et al . Edge-centric computing:vision and challenges [J ] . ACM Sigcomm Computer Communication Review , 2015 , 45 ( 5 ): 37 - 42 .
JUTILA M . An adaptive edge router enabling Internet of things [J ] . IEEE Internet of Things Journal , 2016 , 3 ( 6 ): 1061 - 1069 .
XU Y , MAHENDRAN V , RADHAKRISHNAN S . Towards SDN-based fog computing:MQTT broker virtualization for effective and reliable delivery [C ] // International Conference on Communication Systems and Networks . 2016 : 1 - 6 .
KRISHNAN Y N , BHAGWAT C N , UTPAT A P . Fog computing—network based cloud computing [C ] // International Conference on Electronics and Communication Systems . 2015 : 250 - 251 .
BRUNEO D , DISTEFANO S , LONGO F , et al . Stack4Things as a fog computing platform for smart city applications [C ] // IEEE INFOCOM 2016-IEEE Conference on Computer Communications Workshops . 2016 : 848 - 853 .
GUPTA H , VAHIDDASTJERDI A , GHOSH S K , et al . iFogSim:a toolkit for modeling and simulation of resource management techniques in the Internet of things,edge and fog computing environments [J ] . Software:Practice and Experience , 2017 , 47 ( 9 ): 1275 - 1296 .
YAN S , PENG M , WANG W . User access mode selection in fog computing based radio access networks [J ] . arXiv present,arXiv:1602.00766 , 2016 .
YI S , LI C , LI Q . A survey of fog computing:concepts,applications and issues [C ] // The Workshop on Mobile Big Data . 2015 : 37 - 42 .
HELLER B , SHERWOOD R , MCKEOWN N . The controller placement problem [C ] // Workshop on Hot Topics in Software Defined Networks . 2012 : 7 - 12 .
DSOUZA C , AHN G J , TAGUINOD M . Policy-driven security management for fog computing:preliminary framework and a case study [C ] // IEEE International Conference on Information Reuse and Integration . 2015 : 16 - 23 .
MODI C , PATEL D , BORISANIYA B , et al . Review:a survey of intrusion detection techniques in cloud [J ] . Journal of Network &Computer Applications , 2013 , 36 ( 1 ): 42 - 57 .
KULKARNI S , SAHA S , HOCKENBURY R . Preserving privacy in sensor-fog networks [C ] // Internet Technology and Secured Transactions . 2015 : 96 - 99 .
STOLFO S J , SALEM M B , KEROMYTIS A D . Fog computing:mitigating insider data theft attacks in the cloud [C ] // IEEE Symposium on Security and Privacy Workshops . 2012 : 125 - 128 .
VALENZUELA J , WANG J , BISSINGER N . Real-time intrusion detection in power system operations [J ] . IEEE Transactions on Power Systems , 2013 , 28 ( 2 ): 1052 - 1062 .
STONE M . Cross-validatory choice and assessment of statistical predictions [M ] // Introduction to chaos:Institute of Physics Pub . 1999 : 111 - 147 .
FARAHNAKIAN F , LILJEBERG P , PLOSILA J . Energy-efficient virtual machines consolidation in cloud data centers using reinforcement learning [C ] // Euromicro International Conference on Parallel,Distributed,and Network-Based Processing . 2014 : 500 - 507 .
HAN Z , TAN H , CHEN G , et al . Dynamic virtual machine management via approximate Markov decision process [C ] // IEEE Conference on Computer Communications . 2016 : 1 - 9 .
BEATE OTTENWÄLDER , KOLDEHOFE B , ROTHERMEL K , et al . MigCEP:operator migration for mobility driven distributed complex event processing [C ] // ACM International Conference on Distributed Event-Based Systems . 2013 : 183 - 194 .
DO C T , TRAN N H , PHAM C , et al . A proximal algorithm for joint resource allocation and minimizing carbon footprint in geo-distributed fog computing [C ] // International Conference on Information NETWORKING . 2015 : 324 - 329 .
ZHANG H , XIAO Y , BU S , et al . Fog computing in multi-tier data center networks:a hierarchical game approach [C ] // IEEE International Conference on Communications . 2016 : 1 - 6 .
ZENG D , GU L , GUO S , et al . Joint optimization of task scheduling and image placement in fog computing supported software-defined embedded system [J ] . IEEE Transactions on Computers , 2016 , 65 ( 12 ): 3702 - 3712 .
HUANG C Y , XU K . Reliable realtime streaming in vehicular cloud-fog computing networks [C ] // IEEE/CIC International Conference on Communications in China . 2016 : 1 - 6 .
ZHANG H , ZHANG Q , DU X . Toward vehicle-assisted cloud computing for smartphones [J ] . IEEE Transactions on Vehicular Technology , 2015 , 64 ( 12 ): 5610 - 5618 .
OUEIS J , STRINATI E C , BARBAROSSA S . The fog balancing:load distribution for small cell cloud computing [C ] // Vehicular Technology Conference . 2015 : 1 - 6 .
HONG H J , TSAI P H , HSU C H . Dynamic module deployment in a fog computing platform [C ] // Network Operations and Management Symposium . 2016 : 1 - 6 .
PHAM X Q , HUH E N . Towards task scheduling in a cloud-fog computing system [C ] // Network Operations and Management Symposium (APNOMS) . 2016 : 1 - 4 .
YANG J , ZHANG S , WU X , et al . Online learning-based server provisioning for electricity cost reduction in data center [J ] . IEEE Transactions on Control Systems Technology , 2016 , PP ( 99 ): 1 - 8 .
MAO H , ALIZADEH M , MENACHE I , et al . Resource management with deep reinforcement learning [C ] // ACM Workshop on Hot Topics in Networks . 2016 : 50 - 56 .
LIU N , LI Z , XU J , et al . A hierarchical framework of cloud resource allocation and power management using deep reinforcement learning [C ] // 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS) . 2017 : 372 - 382 .
ZHU X , CHEN H , YANG L T , et al . Energy-aware rolling-horizon scheduling for real-time tasks in virtualized cloud data centers [C ] // High Performance Computing and Communications & 2013 IEEE International Conference on Embedded and Ubiquitous Computing (HPCC_EUC) . 2013 : 1119 - 1126 .
OpenFog Consortium Architecture Working Group . OpenFog reference architecture for fog computing [J ] . OPFRA001 , 2017 , 20817 : 162
CAO Y , HOU P , BROWN D , et al . Distributed analytics and edge intelligence:pervasive health monitoring at the era of fog computing [C ] // The Workshop on Mobile Big Data . 2015 : 43 - 48 .
ROY S , BOSE R , SARDDAR D . A fog-based dss model for driving rule violation monitoring framework on the Internet of things [J ] . International Journal of Advanced Science & Technology , 2015 , 82 : 23 - 32 .
FADLULLAH Z M , KATO N . On optimally reducing power loss in micro-grids with power storage devices [M ] . Evolution of Smart Grids.Springer International Publishing . 2015 : 1361 - 1370 .
KOPETZ H , POLEDNA S . In-vehicle real-time fog computing [C ] // IEEE/IFIP International Conference on Dependable Systems and Networks Workshop . 2016 : 162 - 167 .
KHAN S , PARKINSON S , QIN Y . Fog computing security:a review of current applications and security solutions [J ] . Journal of Cloud Computing , 2017 , 6 ( 1 ): 19 .
LOM M , PRIBYL O , SVITEK M.Industry 4 . 0 as a part of smart cities [C ] // Smart Cities Symposium Prague . 2016 : 1 - 6 .
0
浏览量
2897
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构