浏览全部资源
扫码关注微信
1. 陆军工程大学指挥控制工程学院,江苏 南京 210007
2. 浙江警察学院信息技术系,浙江 杭州 310053
3. 浙江大学城市学院计算机与计算科学学院,浙江 杭州 310015
[ "周胜利(1982-),男,浙江苍南 人,陆军工程大学博士生,主要研究方向为云计算安全。" ]
[ "金苍宏(1982-),男,浙江绍兴人,博士,浙江大学城市学院讲师,主要研究方向为机器学习、云计算。" ]
[ "吴礼发(1968-), 男,湖北蕲春人,博士,陆军工程大学教授,主要研究方向为大数据安全。" ]
[ "洪征(1979-),男,江西南昌人,博士,陆军工程大学副教授,主要研究方向为网络安全。" ]
网络出版日期:2018-05,
纸质出版日期:2018-05-25
移动端阅览
周胜利, 金苍宏, 吴礼发, 等. 基于评分卡—随机森林的云计算用户公共安全信誉模型研究[J]. 通信学报, 2018,39(5):143-152.
Shengli ZHOU, Canghong JIN, Lifa WU, et al. Research on cloud computing users’ public safety trust model based on scorecard-random forest[J]. Journal on communications, 2018, 39(5): 143-152.
周胜利, 金苍宏, 吴礼发, 等. 基于评分卡—随机森林的云计算用户公共安全信誉模型研究[J]. 通信学报, 2018,39(5):143-152. DOI: 10.11959/j.issn.1000-436x.2018085.
Shengli ZHOU, Canghong JIN, Lifa WU, et al. Research on cloud computing users’ public safety trust model based on scorecard-random forest[J]. Journal on communications, 2018, 39(5): 143-152. DOI: 10.11959/j.issn.1000-436x.2018085.
传统云计算用户信誉的研究主要集中在对用户操作行为信誉评估,较少涉及用户发布文本信息的安全管理,并且存在指标筛选欠准确、信誉评估结果缺乏科学验证等问题,难以满足监管部门的实际需求。针对以上问题,提出基于评分卡—随机森林的云计算用户公共安全信誉模型。首先,利用Word2Vec和卷积神经网络进行公共安全标签分类;其次,采用评分卡方法,筛选强相关性指标;最后,结合随机森林算法,建立云计算用户公共安全信誉模型。实验分析表明,所建立的模型能够解决云计算公共安全监管中用户信誉指标筛选不准确和信誉区分准确性低等问题,能够有效识别有害用户,提高云计算用户监管效率。
Traditional cloud computing trust models mainly focused on the calculation of the trust of users’ behavior.In the process of classification and evaluation
there were some problems such as ignorance of content security and lack of trust division verification.Aiming to solve these problems
cloud computing users’ public safety trust model based on scorecard-random forest was proposed.Firstly
the text was processed using Word2Vec in the data preprocessing stage.The convolution neural network (CNN) was used to extract the sentence features for user content tag classification.Then
scorecard method was used to filter the strong correlation index.Meanwhile
in order to establish the users’ public safety trust evaluation model in cloud computing
a random forest method was applied.Experimental results show that the proposed users’ public safety trust evaluation model outperforms the general trust evaluation model.The proposed model can effectively distinguish malicious users from normal users
and it can improve the efficiency of the cloud computing users management.
刘楠 , 魏进武 , 刘露 . 大数据交换信息链 [J ] . 电信科学 , 2016 , 32 ( 10 ): 130 - 136 .
LIU N , WEI J W , LIU L . Big data exchange based on information chain [J ] . Telecommunications Science , 2016 , 32 ( 10 ): 130 - 136 .
周维 , 路劲 , 周可人 , 等 . 基于并发跳表的云数据处理双层索引架构研究 [J ] . 计算机研究与发展 , 2015 , 52 ( 7 ): 1531 - 1545 .
ZHOU W , LU J , ZHOU K R , et al . Concurrent skiplist based double-layer index framework for cloud data processing [J ] . Journal of Computer Research and Devlopment , 2015 , 52 ( 7 ): 1531 - 1545 .
张常有 , 邵立向 , 李文清 , 等 . 云服务的自组织机制及性能分析 [J ] . 中国通信 , 2012 , 9 ( 6 ): 135 - 144 .
ZHANG C Y , SHAO L X , LI W Q , et al . Self organizing mechanism for cloud services and performance analysis [J ] . China Communications , 2012 , 9 ( 6 ): 135 - 144 .
陈康 , 郑纬民 . 云计算:系统实例与研究现状 [J ] . 软件学报 , 2009 , 20 ( 5 ): 1337 - 1348 .
CHEN K , ZHENG W M . Cloud computing:system instances and current research [J ] . Journal of Software , 2009 , 20 ( 5 ): 1337 - 1348 .
王国峰 , 刘川意 , 潘鹤中 , 等 . 云计算模式内部威胁综述 [J ] . 计算机学报 , 2017 , 40 ( 2 ): 296 - 316 .
WANG G F , LIU C Y , PAN H Z , et al . Survey on insider threats to cloud computing [J ] . Chinese Journal of Computers , 2017 , 40 ( 2 ): 296 - 316 .
李丙戌 , 吴礼发 , 周振吉 , 等 . 基于信任的云计算身份管理模型设计与实现 [J ] . 计算机科学 , 2014 , 41 ( 10 ): 144 - 148 .
LI B X , WU L F , ZHOU Z J , et al . Design and implementation of trust-based identity management model for cloud computing [J ] . Computer Science , 2014 , 41 ( 10 ): 144 - 148 .
TIAN L Q , LIN C , YANG N . Evaluation of user behavior trust in cloud computing [C ] // 2010 International Conference on Computer Application and System Modeling (ICCASM) . 2010 : 567 - 572 .
苏铓 , 李凤华 , 史国振 . 基于行为的多级访问控制模型 [J ] . 计算机研究与发展 , 2014 , 51 ( 7 ): 1604 - 1613 .
SU M , LI F H , SHI G Z . Action-based multi-level access control model [J ] . Computer Research and Development , 2014 , 51 ( 7 ): 1604 - 1613 .
周茜 , 于炯 . 云计算下基于信任的防御系统模型 [J ] . 计算机应用 , 2011 , 31 ( 6 ): 1531 - 1535 .
ZHOU Q , YU J . Defense system model based on trust for cloud com-puting [J ] . Computer Application , 2011 , 31 ( 6 ): 1531 - 1535 .
LI X Y , GUI X L , MAO Q , et al . Adaptive dynamic trust measurement and prediction model based on behavior monitoring:adaptive dynamic trust measurement and prediction model based on behavior monitor-ing [J ] . Chinese Journal of Computers , 2009 , 32 ( 4 ): 664 - 674 .
杨家兴 . 复杂网络安全态势评估模型仿真分析 [J ] . 计算机仿真 , 2013 , 30 ( 8 ): 289 - 292 .
YANG J X . Simulation analysis of complex network security situation assessment model [J ] . Computer Simulation , 2013 , 30 ( 8 ): 289 - 292 .
毛建景 , 张凯萍 . 云计算环境下海量用户行为信任评估模型 [J ] . 计算机仿真 , 2016 , 33 ( 3 ): 385 - 388 .
MAO J J , ZHANG K P . Behavior trust evaluation model for massive users under cloud computing environment [J ] . Computer Simulation , 2016 , 33 ( 3 ): 385 - 388 .
丁世飞 , 张健 , 张谢锴 , 等 . 多分类孪生支持向量机研究进展 [J ] . 软件学报 , 2018 , 29 ( 1 ): 89 - 108 .
DING S F , ZHANG J , ZHANG X K , et al . Survey on multi class twin support vector machines [J ] . Journal of Software , 2018 , 29 ( 1 ): 89 - 108 .
WANG S C , XU G L , DU R J . Restricted Bayesian classification networks [J ] . Science China(Information Sciences) , 2013 , 56 ( 7 ): 210 - 224 .
LAM H K , EKONG U , LIU H B , et al . A study of neural-network-based classifiers for material classification [J ] . Neurocomputing , 2014 : 144 .
HINTON G E , . Learning distributed representations of concepts [C ] // The 8th Annual Conference of the Cognitive Science Society . 1986 : 1 - 12 .
MIKOLOV T , CHEN K , CORRADO G , et al . Efficient estimation of word representations in vector space [J ] . Computer Science , 2013 : 1 - 12 .
KIM Y , . Convolutional neural networks for sentence classification [C ] // The 2014 Conference on Empirical Methods in Natural Language Processing . 2014 : 1746 - 1751 .
STILO G , VELARDI P . Efficient temporal mining of micro-blog texts and its application to event discovery [J ] . Data Mining and Knowledge Discovery , 2016 , 30 ( 2 ): 372 - 402 .
KENNETH A C , MICHAEL E S . Debit,credit,or cash:survey evidence on gasoline purchases [J ] . Journal of Economics and Business , 1999 , 51 ( 5 ): 409 - 421 .
WIGINTON J C.A . note on the comparison of logit and discriminant models of consumer credit behavior [J ] . Journal of Financial and Quan-titative Analysis , 1980 , 15 : 757 - 770 .
MAKOWSKI P . Credit scoring branches out [J ] . Credit World , 1985 , 75 : 30 - 37 .
CARTER C , CATLETT J . Assessing credit card application using machine learning [J ] . IEEE Expert Magazine , 1987 , 2 ( 3 ): 71 - 79 .
WANG G , HAO J , MA J , et al . A comparative assessment of ensemble learning for credit scoring [J ] . Expert Systems with Applications , 2011 , 38 ( 1 ): 223 - 230 .
GARETH J , DANIELA W , TREVOR H , et al . Anintroduction to statistical learning with application in R [M ] // An Introduction to Satis-tical Learning . 2013 : 78 - 129 .
0
浏览量
1377
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构