浏览全部资源
扫码关注微信
1. 重庆邮电大学计算智能重点实验室,重庆 400065
2. 西安电子科技大学计算机学院,陕西 西安 710071
[ "肖斌(1982-),男,重庆人,博士,重庆邮电大学教授,主要研究方向为图像处理、模式识别等。" ]
[ "史文明(1990-),男,河南郸城人,重庆邮电大学硕士生,主要研究方向为图像处理、模式识别。" ]
[ "李伟生(1975-),男,四川南充人,博士,重庆邮电大学教授、博士生导师,主要研究方向为智能信息处理、模式识别、信息融合等。" ]
[ "马建峰(1963-),男,陕西西安人,博士,西安电子科技大学教授、博士生导师,主要研究方向为信息安全、密码学与无线网络安全等。" ]
网络出版日期:2018-05,
纸质出版日期:2018-05-25
移动端阅览
肖斌, 史文明, 李伟生, 等. 基于多阶分数离散切比雪夫变换和产生序列的图像加密方法[J]. 通信学报, 2018,39(5):1-10.
Bin XIAO, Wenming SHI, Weisheng LI, et al. Image encryption method based on multiple-order fractional discrete Tchebichef transform and generating sequence[J]. Journal on communications, 2018, 39(5): 1-10.
肖斌, 史文明, 李伟生, 等. 基于多阶分数离散切比雪夫变换和产生序列的图像加密方法[J]. 通信学报, 2018,39(5):1-10. DOI: 10.11959/j.issn.1000-436x.2018072.
Bin XIAO, Wenming SHI, Weisheng LI, et al. Image encryption method based on multiple-order fractional discrete Tchebichef transform and generating sequence[J]. Journal on communications, 2018, 39(5): 1-10. DOI: 10.11959/j.issn.1000-436x.2018072.
基于分数阶变换的图像加密方法近些年被广泛研究和使用,然而现有的基于分数阶变换的图像加密技术多在复数域进行,加密后的图像既包含了相位信息也包含了振幅信息,不利于传输和存储。另外,一些满足保实性的加密方法,则存在密钥相对单一、敏感性不足等问题。基于此,提出一种基于多阶分数离散切比雪夫变换和产生序列的图像加密方法,该方法使用随机生成的行、列分数阶向量以及通过混沌序列生成的产生序列作为密钥对图像进行加密,在满足实值传输的同时大大扩展了密钥空间。实验结果进一步表明,该加密方法可以抵抗多种攻击,解密后的图像几乎无失真,具有很好的加密效果以及足够的安全性和顽健性。
Fractional transform based image encryption methods have been widely studied in recent years.However
most of the existing fractional transform based image encryption methods are defined in the complex field.Thus
the encrypted images contain both phase and amplitude information
which is not conducive to transmission and storage.Moreover
some encryption methods that meet the requirements of reality-preserving have problems of relatively single keys
lacking of sensitivity and so on.An image encryption method was proposed based on multiple-order fractional discrete Tchebichef transform and generating sequence.The proposed method used randomly generated row and column vectors and generating sequence generated by Chaotic sequences as keys to encrypt images
which not only satisfied property of reality-preserving transmission but also greatly expanded the key space.The experimental results further demonstrate that the proposed encryption method can resist a variety of attacks
and decrypted images are almost non-distored
which indicate excellent encryption effect
sufficient security and robustness of the method.
文昌辞 , 王沁 , 黄付敏 , 等 . 基于仿射和复合混沌的图像自适应加密算法 [J ] . 通信学报 , 2012 , 33 ( 11 ): 119 - 127 .
WEN C C , WANG Q , HUANG F M , et al . Image adaptive encryption algorithm based on affine and compound Chaos [J ] . Journal on Communications , 2012 , 33 ( 11 ): 119 - 127 .
邓晓衡 , 廖春龙 , 朱从旭 , 等 . 像素位置与比特双重置乱的图像混沌加密算法 [J ] . 通信学报 , 2014 , 35 ( 3 ): 216 - 223 .
DENG X H , LIAO C L , ZHU C X , et al . Image Chaos encryption algorithm with double displacement of pixel positions and bits [J ] . Journal on Communications , 2014 , 35 ( 3 ): 216 - 223 .
CATTERMOLE K W . The Fourier transform and its applications [J ] . Electronics & Power , 2009 , 11 ( 10 ):357.
ANTONINI M , BARLAUD M , MATHIEU P , et al . Image coding using wavelet transform [J ] . IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society , 1992 , 1 ( 2 ): 205 - 20 .
AHMED N , NATARAJAN T , RAO K R . Discrete cosine transform [J ] . IEEE Transactions on Computers , 2006 , C-23 ( 1 ): 90 - 93 .
KOMNINOS N , MANTAS G . PEA:polymorphic encryption algorithm based on quantum computation [J ] . International Journal of Systems Control & Communications , 2011 , 3 ( 3 ): 1 - 18 .
AKHSHANI A , AKHAVAN A , LIM S C , et al . An image encryption scheme based on quantum logistic map [J ] . Communications in Nonlinear Science & Numerical Simulation , 2012 , 17 ( 12 ): 4653 - 4661 .
EL-LATIF A A A , LI L , WANG N , et al . A new approach to chaotic image encryption based on quantum chaotic system,exploiting color spaces [J ] . Signal Processing , 2013 , 93 ( 11 ): 2986 - 3000 .
YANG Y G , XIA J , JIA X , et al . Novel image encryption/decryption based on quantum Fourier transform and double phase encoding [J ] . Quantum Information Processing , 2013 , 12 ( 11 ): 3477 - 3493 .
CANDAN C , KUTAY M A , OZAKTAS H M . The discrete fractional Fourier transform [C ] // IEEE International Conference on Acoustics,Speech,and Signal Processing . 1999 : 1713 - 1716 .
CARIOLARO G , ERSEGHE T , KRANIAUSKAS P . The fractional discrete cosine transform [J ] . IEEE Transactions on Signal Processing , 2002 , 50 ( 4 ): 902 - 911 .
LIU X , HAN G , WU J , et al . Fractional Krawtchouk transform with an application to image watermarking [J ] . IEEE Transactions on Signal Processing , 2017 ,PP( 99 ): 1 - 1 .
陶然 , 邓兵 , 王越 . 分数阶 FOURIER 变换在信号处理领域的研究进展 [J ] . 中国科学 信息科学:中国科学 , 2006 , 36 ( 2 ): 113 - 136 .
TAO R , DENG B , WANG Y . Research progress in fractional Fourier transform in signal processing [J ] . Science China Information Science:Science China , 2006 , 36 ( 2 ): 113 - 136 .
KANG X , TAO R , ZHANG F . Multiple-parameter discrete fractional transform and its applications [J ] . IEEE Transactions on Signal Processing , 2016 , 64 ( 13 ): 3402 - 3417 .
LIMA J B , NOVAES L F G . Image encryption based on the fractional Fourier transform over finite fields [J ] . Signal Processing , 2014 , 94 ( 1 ): 521 - 530 .
SUI L . Asymmetric double-image encryption method by using iterative phase retrieval algorithm in fractional Fourier transform domain [J ] . Optical Engineering , 2014 , 53 ( 2 ):02 6108.
ZHOU N , LIU X , ZHANG Y , et al . Image encryption scheme based on fractional Mellin transform and phase retrieval technique in fractional Fourier domain [J ] . Optics & Laser Technology , 2013 , 47 ( 4 ): 341 - 346 .
TAO R , XIN Y , WANG Y . Double image encryption based on random phase encoding in the fractional Fourier domain [J ] . Optics Express , 2007 , 15 ( 24 ): 16067 - 16079 .
REFREGIER P , JAVIDI B . Optical image encryption based on input plane encoding and Fourier plane random encoding [J ] . Optics Letters , 1995 , 20 ( 7 ):767.
UNNIKRISHNAN G , JOSEPH J , SINGH K . Optical encryption by double-random phase encoding in the fractional Fourier domain [J ] . Optics Letters , 2000 , 25 ( 12 ):887.
JOSHI M , SHAKHER C , SINGH K . Fractional Fourier plane image encryption technique using radial hilbert,and jigsaw transform [J ] . Optics & Lasers in Engineering , 2010 , 48 ( 7-8 ): 754 - 759 .
LANG J , TAO R , WANG Y . Image encryption based on the multiple-parameter discrete fractional Fourier transform and chaos function [J ] . Optics Communications , 2010 , 283 ( 10 ): 2092 - 2096 .
WU J , GUO F , ZENG P , et al . Image encryption based on a reality-preserving fractional discrete cosine transform and a Chaos-based generating sequence [J ] . Journal of Modern Optics , 2013 , 60 ( 20 ): 1760 - 1771 .
WU J H , ZHANG L , ZHOU N R , et al . Image encryption based on the multiple-order discrete fractional cosine transform [J ] . Optics Communications , 2010 , 283 ( 9 ): 1720 - 1725 .
XIAO B , MA J F , CUI J T . Radial Tchebichef moment invariants for image recognition [J ] . Journal of Visual Communication & Image Representation , 2012 , 23 ( 2 ): 381 - 386 .
DAI X B , SHU H Z , LUO L M , et al . Reconstruction of tomographicimages from limited range projections using discrete Radon transform and Tchebichef moments [J ] . Pattern Recognition , 2010 , 43 ( 3 ): 1152 - 1164 .
MUKUNDAN R , ONG S H , LEE P A . Image analysis by Tchebichef moments [J ] . IEEE Transactions on Image Processing a Publication of the IEEE Signal Processing Society , 2001 , 10 ( 9 ): 1357 - 64 .
DENG C , GAO X , LI X , et al . A local Tchebichef moments-based robust image watermarking [J ] . Signal Processing , 2009 , 89 ( 8 ): 1531 - 1539 .
YAP P T , RAVEENDRAN P . Image focus measure based on Chebyshev moments [J ] . IEEE Proceedings-Vision,Image and Signal Processing , 2004 , 151 ( 2 ): 128 - 136 .
ZHANG L , QIAN G , XIAO W , et al . Geometric invariant blind image watermarking by invariant Tchebichef moments [J ] . Optics Express , 2007 , 15 ( 5 ):2251.
XIAO B , LU G , ZHANG Y , et al . Lossless image compression based on integer discrete Tchebichef transform [J ] . Neurocomputing , 2016 , 214 ( C ): 587 - 593 .
0
浏览量
1309
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构