浏览全部资源
扫码关注微信
1. 哈尔滨工程大学信息与通信工程学院,黑龙江 哈尔滨 150001
2. 黑龙江省农业科学院遥感技术中心,黑龙江 哈尔滨 150086
[ "崔颖(1979-),女,黑龙江哈尔滨人,博士,哈尔滨工程大学副教授,主要研究方向为遥感图像处理、智能信号处理、无线传感器网络。" ]
[ "徐凯(1992-),男,浙江绍兴人,哈尔滨工程大学硕士生,主要研究方向为遥感图像处理、机器学习。" ]
[ "陆忠军(1975-),男,黑龙江哈尔滨人,黑龙江省农业科学院遥感技术中心副研究员,主要研究方向为农业遥感图像分析。" ]
[ "刘述彬(1963-),男,黑龙江哈尔滨人,黑龙江省农业科学院遥感技术中心研究员,主要研究方向为农业遥感图像建模、数据分析。" ]
[ "王立国(1974-),男,黑龙江哈尔滨人,哈尔滨工程大学教授,主要研究方向为图像/信号处理技术、机器学习与模式识别理论。" ]
网络出版日期:2018-04,
纸质出版日期:2018-04-25
移动端阅览
崔颖, 徐凯, 陆忠军, 等. 主动学习策略融合算法在高光谱图像分类中的应用[J]. 通信学报, 2018,39(4):91-99.
Ying CUI, Kai XU, Zhongjun LU, et al. Combination strategy of active learning for hyperspectral images classification[J]. Journal on communications, 2018, 39(4): 91-99.
崔颖, 徐凯, 陆忠军, 等. 主动学习策略融合算法在高光谱图像分类中的应用[J]. 通信学报, 2018,39(4):91-99. DOI: 10.11959/j.issn.1000-436x.2018067.
Ying CUI, Kai XU, Zhongjun LU, et al. Combination strategy of active learning for hyperspectral images classification[J]. Journal on communications, 2018, 39(4): 91-99. DOI: 10.11959/j.issn.1000-436x.2018067.
针对传统主动学习单一策略算法在挑选最有价值未标记样本时出现的抖动和不稳定的现象,引入集成学习(ensemble learning)分类器的加权组合思想,提出一种基于组合策略的联合挑选(ESAL)方法,将模型的组合衍生至策略的组合,从而实现单一模型多策略的融合,获得更高的稳定性。通过对高光谱遥感图像分类结果的分析可以看出,在获得相同精度阈值时,ESAL 算法相对于单一策略算法最高可节省成本 25.4%,抖动频率减少至原来的16.67%,抖动明显改善,体现出ESAL算法良好的稳定性。
In order to improve the phenomena of jitter and instability of the traditional active learning single strategy algorithm in selecting the most valuable unlabeled samples.The idea of weighted combination of ensemble learning classifier and proposes a joint selection based on the combination strategy method (ESAL
ensemble strategy active learning) was introduced
the combination of the model was extended to the combination of the strategy so as to achieve the fusion of multiple strategies in a single model and achieve higher stability.By analyzing the classification results of hyperspectral remote sensing images
the ESAL algorithm can save 25.4% of the cost compared with the single strategy algorithm and reduce the jitter frequency to 16.67% when the same accuracy threshold is obtained
and the jitter is obviously improved.ESAL algorithm is out of good stability.
WEI D M M C . Active learning via multi-view and local proximity co-regularization for hyperspectral image classification [J ] . IEEE Journal of Selected Topics in Signal Processing , 2011 , 5 ( 3 ): 618 - 628 .
MITRA P , UMA SHANKAR B , PAL S K . Segmentation of multispectral remote sensing images using active support vector machines [J ] . Pattern Recognition Letters , 2004 , 25 ( 9 ): 1067 - 1074 .
JOSHI A J , PORIKLI F , PAPANIKOLOPOULOS N . Multi-class active learning for image classification [C ] // 2009 IEEE Symposium on The Computer Vision and Pattern Recognition . 2009 : 2372 - 2379 .
TUIA D , VOLPI M , COPA L , et al . A Survey of active learning algorithms for supervised remote sensing image classification [J ] . IEEE Journal of Selected Topics in Signal Processing , 2011 , 5 ( 3 ): 606 - 617 .
李宠 , 谷琼 , 蔡之华 . 改进的主动学习算法及在高光谱分类中的应用 [J ] . 华中科技大学学报 , 2013 , 41 ( 11 ): 274 - 278 .
LI C , GU Q , CAI Z H . Improved active learning algorithm and its application in hyperspectral classification [J ] . Journal of Huazhong University of Science and Technology , 2013 , 41 ( 11 ): 274 - 278 .
LI M , WANG R , TANG K . Combining semi-supervised and active learning for hyperspectral image classification [C ] // 2013 IEEE Symposium on The Computational Intelligence and Data Mining (CIDM) . 2013 : 89 - 94 .
WAN L , TANG K , LI M , et al . Collaborative active and semisupervised learning for hyperspectral remote sensing image classification [J ] . IEEE Transactions on Geoscience and Remote Sensing , 2015 , 53 ( 5 ): 2384 - 2396 .
WANG Z , DU B , ZHANG L , et al . A novel semisupervised active-learning algorithm for hyperspectral image classification [J ] . IEEE Transactions on Geoscience and Remote Sensing , 2017 , 55 ( 6 ): 3071 - 3083 .
王立国 , 李阳 . 融合主动学习的高光谱图像半监督分类 [J ] . 哈尔滨工程大学学报 , 2017 , 38 ( 8 ): 1322 - 1327 .
WANG L G , LI Y . Semi-supervised classification for hyperspectral image collaborating with active learning algorithm [J ] . Journal of Harbin Engineering University , 2017 , 38 ( 8 ): 1322 - 1327 .
SAMIAPPAN S , MOORHEAD R J . Semi-supervised co-training and active learning framework for hyperspectral image classification [C ] // the Geoscience and Remote Sensing Symposium (IGARSS) , 2015 : 401 - 404 .
王立国 , 杨月霜 , 刘丹凤 . 基于改进三重训练算法的高光谱图像半监督分类 [J ] . 哈尔滨工程大学学报 , 2016 , 37 ( 6 ): 849 - 854 .
WANG L G YANG Y S , LIU D F . Semi-supervised classification for hyperspectral image based on improved tri-training method [J ] . Journal of Harbin Engineering University , 2016 , 37 ( 6 ): 849 - 854 .
赵建华 , 刘宁 . 结合主动学习策略的半监督分类算法 [J ] . 计算机应用研究 , 2015 , 32 ( 8 ): 2295 - 2298 .
ZHAO J H , LIU N . Semi-supervised classification algorithm based on active learning strategies [J ] . Application Research of Computers , 2015 , 32 ( 8 ): 2295 - 2298 .
ZHANG Z , PASOLLI E , CRAWFORD M M , et al . An active learning framework for hyperspectral image classification using hierarchical segmentation [J ] . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 2016 , 9 ( 2 ): 640 - 654 .
陈荣 , 曹永锋 , 孙洪 . 基于主动学习和半监督学习的多类图像分类 [J ] . 自动化学报 , 2011 , 37 ( 8 ): 954 - 962 .
CHEN R , CAO Y F , SUN H . Multi-class image classification with active learning and semi-supervised learning [J ] . Acta Automatica Sinica , 2011 , 37 ( 8 ): 954 - 962 .
韩松来 , 张辉 , 周华平 . 基于关联度函数的决策树分类算法 [J ] . 计算机应用 , 2005 , 25 ( 11 ): 2655 - 2657 .
HAN S L , ZHANG H , ZHOU H P . Association function algorithm for decision tree [J ] . Journal of Computer Applications , 2005 , 25 ( 11 ): 2655 - 2657 .
QUINLAN J R . Induction of decision trees [J ] . Machine Learning , 1986 , 1 ( 1 ): 81 - 106 .
LIU Y , YAO X . Ensemble learning via negative correlation [J ] . Neural Networks , 1999 , 12 ( 10 ): 1399 - 1404 .
DIETTERICH T G . Ensemble learning [J ] . The Handbook of Brain Theory and Neural Networks , 2002 , 2 : 110 - 125 .
0
浏览量
1519
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构