浏览全部资源
扫码关注微信
1. 四川大学计算机学院,四川 成都 610065
2. 四川师范大学基础教学学院,四川 成都 610068
[ "彭舰(1970-),男,四川成都人,博士,四川大学教授,主要研究方向为大数据、传感器计算、移动计算等。" ]
[ "王屯屯(1992-),男,河南安阳人,四川大学硕士生,主要研究方向为数据挖掘、推荐系统、用户行为建模等。" ]
[ "陈瑜(1974-),男,四川成都人,博士,四川大学讲师,主要研究方向为进化计算、机器学习等。" ]
[ "刘唐(1980-),男,四川乐山人,博士,四川师范大学副教授,主要研究方向为无线传感器网络、无线能量传输等。" ]
[ "徐文政(1985-),男,四川成都人,博士,四川大学副研究员,主要研究方向为社交网络、物联网、移动计算。" ]
网络出版日期:2018-03,
纸质出版日期:2018-03-25
移动端阅览
彭舰, 王屯屯, 陈瑜, 等. 基于跨平台的在线社交网络用户推荐研究[J]. 通信学报, 2018,39(3):147-158.
Jian PENG, Tuntun WANG, Yu CHEN, et al. User recommendation based on cross-platform online social networks[J]. Journal on communications, 2018, 39(3): 147-158.
彭舰, 王屯屯, 陈瑜, 等. 基于跨平台的在线社交网络用户推荐研究[J]. 通信学报, 2018,39(3):147-158. DOI: 10.11959/j.issn.1000-436x.2018044.
Jian PENG, Tuntun WANG, Yu CHEN, et al. User recommendation based on cross-platform online social networks[J]. Journal on communications, 2018, 39(3): 147-158. DOI: 10.11959/j.issn.1000-436x.2018044.
在社交网络用户推荐研究领域,通过提取用户的行为模式对其进行好友推荐。但是用户的行为是多样性的,在不同的社交平台,用户可能有不同的行为模型。提出跨平台用户推荐模型,同时对用户相关的所有社交网络平台进行建模,最后将用户在所有平台的行为模式进行融合。基于真实的新浪微博数据集和知乎数据集,通过一系列对比实验证明,跨平台用户推荐模型可以更加全面准确地刻画用户行为,更好地进行用户推荐。
In the field of online social networks on user recommendation
researchers extract users’ behaviors as much as possible to model the users.However
users may have different likes and dislikes in different social networks.To tackle this problem
a cross-platform user recommendation model was proposed
users would be modeled all-sided.In this study
the Sina micro blog and the Zhihu were investigated in the proposed model
the experimental results show that the proposed model is competitive.Based on the proposed model and the experimental results
it can be known that modeling users in cross-platform online social networks can describe the user more comprehensively and leads to a better recommendation.
DUAN J , AI Y . LDA topic model for microblog recommendation [C ] // International Conference on Asian Language Processing (IALP) . 2015 : 185 - 188 .
陈克寒 , 韩盼盼 , 吴健 . 基于用户聚类的异构社交网络推荐算法 [J ] . 计算机学报 , 2013 , 36 ( 2 ): 349 - 359 .
CHEN K H , HAN P P , WU J . User clustering based social network recommendation [J ] . Journal of Computer , 2013 , 36 ( 2 ): 349 - 359 .
尚燕敏 , 张鹏 , 曹亚男 . 融合链接拓扑结构和用户兴趣的朋友推荐方法 [J ] . 通信学报 , 2015 , 36 ( 2 ): 117 - 125 .
SHANG Y M , ZHANG P , CAO Y N . New interest-sensitive and network-sensitive method for user recommendation [J ] . Journal on Communications , 2015 , 36 ( 2 ): 117 - 125 .
ZHONG E , FAN W , WANG J , et al . ComSoc:adaptive transfer of user behaviors over composite social network [C ] // The 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . 2012 : 696 - 704 .
MORICZ M , DOSBAYEV Y , BERLYANT M . PYMK:friend recommendation at myspace [C ] // The 2010 ACM SIGMOD International Conference on Management of data . 2010 : 999 - 1002 .
DENG Z , HE B , YU C , et al . Personalized friend recommendation in social network based on clustering method [M ] // Computational Intelligence and Intelligent Systems . Springer Berlin Heidelberg , 2012 : 84 - 91 .
LIBEN-NOWELL D , KLEINBERG J . The link-prediction problem for social networks [J ] . Journal of the American Society for Information Science and Technology , 2007 , 58 ( 7 ): 1019 - 1031 .
DAS A S , DATAR M , GARG A , et al . Google news personalization:scalable online collaborative filtering [C ] // The 16th international conference on World Wide Web . 2007 : 271 - 280 .
KIM Y , SHIM K . TWILITE:a recommendation system for Twitter using a probabilistic model based on latent Dirichlet allocation [J ] . Information Systems , 2013 , 42 ( 3 ): 59 - 77 .
ABEL F , ARAUJO S , GAO Q , et al . Analyzing cross-system user modeling on the social Web [C ] // International Conference on Web Engineering . 2011 : 28 - 43 .
DENG Z , YAN M , SANG J , et al . Twitter is faster:personalized time-aware video recommendation from Twitter to YouTube [J ] . ACM Transactions on Multimedia Computing,Communications,and Applications (TOMM) , 2013 , 11 ( 2 ): 1 - 23 .
DENG Z , SANG J , XU C . Personalized video recommendation based on cross-platform user modeling [C ] // IEEE International Conference on Multimedia and Expo (ICME) . 2013 .
ROY S D , MEI T , ZENG W , et al . Social transfer:cross-domain transfer learning from social streams for media applications [C ] // The 20th ACM International Conference on Multimedia . 2012 : 649 - 658 .
PAN S J , YANG Q . A survey on transfer learning [J ] . IEEE Transactions on Knowledge and Data Engineering , 2010 , 22 ( 10 ): 1345 - 1359 .
ZHOU X , LIANG X , ZHANG H , et al . Cross-platform identification of anonymous identical users in multiple social media networks [J ] . IEEE Transactions on Knowledge and Data Engineering , 2016 , 28 ( 2 ): 411 - 424 .
KONG X , ZHANG J , YU P S . Inferring anchor links across multiple heterogeneous social networks [C ] // The 22nd ACM international conference on Information & Knowledge Management . 2013 : 179 - 188 .
GAGA O , LEI H , PARTHASARATHI S H K , et al . Exploiting innocuous activity for correlating users across sites [C ] // The 22nd International Conference on World Wide Web . 2013 : 447 - 458 .
NARAYANAN A , SHMATIKOV V . De-anonymizing social networks [C ] // 30th IEEE Symposium on Security and Privacy . 2009 : 173 - 187 .
SALEM Y , HONG J , LIU W . CSFinder:a cold-start friend finder in large-scale social networks [C ] // IEEE International Conference on Big Data (Big Data) . 2015 : 687 - 696 .
MANDL M , FELFERNIG A . Improving the performance of unit critiquing [C ] // International Conference on User Modeling,Adaptation,and Personalization . 2012 : 176 - 187 .
MCCARTHY K , SALEM Y , SMYTH B . Experience-based critiquing:reusing critiquing experiences to improve conversational recommendation [C ] // International Conference on Case-Based Reasoning . 2010 : 480 - 494 .
SALEM Y , HONG J . History-aware critiquing-based conversational recommendation [C ] // The 22nd International Conference on World Wide Web . 2013 : 63 - 64 .
JONGHYUK S , SANGHO L , JONG K . Spam filtering in twitter using sender-receiver relationship [J ] . Recent Advances in Intrusion Detection-international Symposium , 2011 , 6961 : 301 - 317 .
ADOMAVICIUS G , TUZHILIN A . Toward the next generation of recommender systems:a survey of the state-of-art and possible extensions [J ] . IEEE Transactions on Knowledge and Data Engineering , 2005 , 17 ( 6 ): 734 - 749 .
0
浏览量
1725
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构