浏览全部资源
扫码关注微信
江苏大学计算机科学与通信工程学院,江苏 镇江 212013
[ "王新胜(1972-),男,江苏宿迁人,博士,江苏大学副教授,主要研究方向为无线传感器网络等。" ]
[ "卞震(1992-),男,江苏淮安人,江苏大学硕士生,主要研究方向为车联网安全结构。" ]
网络出版日期:2018-03,
纸质出版日期:2018-03-25
移动端阅览
王新胜, 卞震. 基于贝叶斯模型的驾驶行为识别与预测[J]. 通信学报, 2018,39(3):108-117.
Xinsheng WANG, Zhen BIAN. Driving behavior recognition and prediction based on Bayesian model[J]. Journal on communications, 2018, 39(3): 108-117.
王新胜, 卞震. 基于贝叶斯模型的驾驶行为识别与预测[J]. 通信学报, 2018,39(3):108-117. DOI: 10.11959/j.issn.1000-436x.2018043.
Xinsheng WANG, Zhen BIAN. Driving behavior recognition and prediction based on Bayesian model[J]. Journal on communications, 2018, 39(3): 108-117. DOI: 10.11959/j.issn.1000-436x.2018043.
针对智能驾驶系统处理大量驾驶数据时出现的效率和精度不足的问题,提出一种基于贝叶斯模型来处理驾驶数据,识别和预测人类驾驶行为的方法。该方法可以无监管地通过驾驶数据对应地推断出具体驾驶行为,共分为2步:第一步,通过贝叶斯模型分割算法将惯性传感器收集到驾驶数据分割为近线性分段;第二步,通过LDA拓展模型将线性分段聚集为具体的驾驶行为(如制动、转弯、加速和惯性滑行)。离线实验和在线实验结果表明,在处理大量驾驶数据的情况下,该方法效率和识别精度更高。
Since the existing intelligent driving systems are lack of efficiency and accuracy when processing huge number of driving data
a brand new approach of processing driving data was developed to identify and predicate human driving behavior based on Bayesian model.The approach was proposed to take two steps to deduce the specific driving behavior from driving data correspondingly without any supervision
the first step being using Bayesian model segmentation algorithm to divide driving data that inertial sensor collected into near-linear segments with the help of Bayesian model segmentation algorithm
and the second step being using extended LDA model to aggregate those linear segments into specific driving behavior (such as braking
turning
acceleration and coasting).Both offline and online experiments are conducted to verify this approach and it turns out that approach has higher efficiency and recognition accuracy when dealing with numerous driving data.
FRANKE U , PFEIFFER D , RABE C , et al . Making bertha see [C ] // IEEE International Conference on Computer Vision Workshops . 2014 : 214 - 221 .
WINNER H , HAKULI S , LOTZ F , et al . Handbook of driver assistance systems:basic information,components and systems for active safety and comfort [M ] . Springer Publishing Company,Incorporated , 2015 .
CHEN Y , JIANG X H , LIAO L C , et al . Driving behavior motivation model research based on vehicle trajectory data [C ] // International Conference on Smart Vehicular Technology,Transportation,Communication and Applications . 2017 : 36 - 44 .
DOSHI A , MORRIS B , TRIVEDI M . On-road prediction of driver’s intent with multimodal sensory cues [J ] . IEEE Pervasive Computing , 2011 , 10 ( 3 ): 22 - 34 .
SATZODA R K , MARTIN S , LY M V , et al . Towards automated drive analysis:a multimodal synergistic approach [C ] // International IEEE Conference on Intelligent Transportation Systems . 2013 : 1912 - 1916 .
STUBING H , BECHLER M , HEUSSNER D , et al . SIM TD :a car-to-X system architecture for field operational tests [J ] . IEEE Communications Magazine , 2010 , 48 ( 5 ): 148 - 154 .
ALEXANDER P , HALEY D , GRANT A.Cooperative intelligent transport systems:5 . 9-GHz field trials [J ] . Proceedings of the IEEE , 2011 , 99 ( 7 ): 1213 - 1235 .
LI Z , BAO S , KOLMANOVSKY I V , et al . Visual-manual distraction detection using driving performance indicators with naturalistic driving data [J ] . IEEE Transactions on Intelligent Transportation Systems , 2017 , PP ( 99 ): 1 - 8 .
MAYE J , TRIEBEL R , SPINELLO L , et al . Bayesian on-line learning of driving behaviors [C ] // IEEE International Conference on Robotics and Automation . 2011 : 4341 - 4346 .
YAN X , SU X G . Bayesian linear regression [J ] . Security Ticket Control , 2009 , 15 ( 1 ): 1052 - 1056 .
KIRCHNER M R , RYAN K , WRIGHT N . Maneuvering vehicle tracking with Bayesian changepoint detection [C ] // IEEE Aerospace Conference . 2017 : 1 - 9 .
KRESTEL R , FANKHAUSER P , NEJDL W . Latent dirichlet allocation for tag recommendation [C ] // ACM Conference on Recommender Systems . 2009 : 61 - 68 .
HARLÉ F , CHATELAIN F , GOUY-PAILLER C , et al . Bayesian model for multiple change-points detection in multivariate time series [J ] . IEEE Transactions on Signal Processing , 2016 , 64 ( 16 ): 4351 - 4362 .
KIM J H , HAYAKAWA S , SUZUKI T , et al . Modeling of driver's collision avoidance maneuver based on controller switching model [J ] . IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics , 2005 , 35 ( 6 ): 1131 - 1143 .
SEKIZAWA S , INAGAKI S , SUZUKI T , et al . Modeling and recognition of driving behavior based on stochastic switched ARX model [C ] // IEEE Conference on Decision and Control,2005 and 2005 European Control Conference . 2006 : 5095 - 5100 .
TERADA R , OKUDA H , SUZUKI T , et al . Multi-scale driving behavior modeling using hierarchical PWARX model [C ] // International IEEE Conference on Intelligent Transportation Systems . 2010 : 1638 - 1644 .
TANIGUCHI T , NAGASAKA S , HITOMI K , et al . Semiotic prediction of driving behavior using unsupervised double articulation analyzer [C ] // Intelligent Vehicles Symposium . 1931 : 849 - 854 .
BANDO T , TAKENAKA K , NAGASAKA S , et al . Unsupervised drive topic finding from driving behavioral data [C ] // Intelligent Vehicles Symposium . 2013 : 177 - 182 .
JOHNSON D A , TRIVEDI M M . Driving style recognition using a smartphone as a sensor platform [C ] // International IEEE Conference on Intelligent Transportation Systems . 2011 : 1609 - 1615 .
PAUL F , ZHEN L . On-line inference for multiple changepoint problems [J ] . Journal of the Royal Statistical Society , 2007 , 69 ( 4 ): 589 - 605 .
LY M V , MARTIN S , TRIVEDI M M . Driver classification and driving style recognition using inertial sensors [C ] // Intelligent Vehicles Symposium . 2013 : 1040 - 1045 .
MAYE J , TRIEBEL R , SPINELLO L , et al . Bayesian on-line learning of driving behaviors [C ] // IEEE International Conference on Robotics and Automation . 2011 : 4341 - 4346 .
STEPHENS D A . Bayesian retrospective multiple-changepoint identification [J ] . Journal of the Royal Statistical Society , 1994 , 43 ( 1 ): 159 - 178 .
0
浏览量
1618
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构