浏览全部资源
扫码关注微信
国家数字交换系统工程技术研究中心,河南 郑州 450002
[ "肖帅芳(1989-),男,河南许昌人,国家数字交换系统工程技术研究中心博士生,主要研究方向为无线物理层安全、无线网络与信息安全等。" ]
[ "郭云飞(1963-),男,河南郑州人,国家数字交换系统工程技术研究中心教授、博士生导师,主要研究方向为新型网络体系结构、网络与信息安全等。" ]
[ "黄开枝(1973-),女,安徽滁州人,国家数字交换系统工程技术研究中心教授、博士生导师,主要研究方向为无线物理层安全、移动通信网络与信息安全等。" ]
[ "金梁(1969-),男,北京人,国家数字交换系统工程技术研究中心教授、博士生导师,主要研究方向为无线物理层安全、无线通信网络与信息安全等。" ]
网络出版日期:2018-03,
纸质出版日期:2018-03-25
移动端阅览
肖帅芳, 郭云飞, 黄开枝, 等. 面向物联网多跳中继系统的协作密钥生成方法[J]. 通信学报, 2018,39(3):86-94.
Shuaifang XIAO, Yunfei GUO, Kaizhi HUANG, et al. Cooperative secret key generation for multi-hop relaying systems in Internet of things[J]. Journal on communications, 2018, 39(3): 86-94.
肖帅芳, 郭云飞, 黄开枝, 等. 面向物联网多跳中继系统的协作密钥生成方法[J]. 通信学报, 2018,39(3):86-94. DOI: 10.11959/j.issn.1000-436x.2018036.
Shuaifang XIAO, Yunfei GUO, Kaizhi HUANG, et al. Cooperative secret key generation for multi-hop relaying systems in Internet of things[J]. Journal on communications, 2018, 39(3): 86-94. DOI: 10.11959/j.issn.1000-436x.2018036.
针对物联网多跳中继系统中密钥生成方法速率低的问题,提出一种基于网络编码的协作密钥生成方法。在各节点完成信道估计后,中继节点采用安全网络编码技术辅助通信双方获取相同信道的估计值,同时辅助信息不泄露该信道的任何信息,最后通信双方直接在公共信道上协商得到相同的密钥。理论分析和仿真结果表明,该方法可以有效地提高可达密钥速率,同时增加传输路径,选取跳数少、信道变化大的传输路径,可以进一步提高可达密钥速率。
The achievable key rate of secret key generation method in multi-hop relaying systems was relative low in Internet of things.A cooperative secret key generation algorithm based on network coding was proposed to improve the achievable key rate.Firstly
all the nodes send training sequences in turn to estimate the channels.After that the relays employ secure network coding technique to assist the two legitimate users to obtain the correlative observations of the same wireless channel
with nothing leakage about the channel information to the eavesdropper.Finally
the two legitimate users agreed on a common secret key directly over the public channel.Theoretical and simulation results validate the performance of the proposed secret key generation algorithm
and obtain that increasing the wireless transmission paths
selecting the transmission path with less hops and larger variance channels can further improve the achievable secret key rate.
LINDQVIST U , NEUMANN P G . The future of the Internet of things [J ] . Communications of the ACM , 2017 , 60 ( 2 ): 26 - 30 .
SAMAILA M G , NETO M , FERNANDES D A B , et al . Security challenges of the Internet of things [M ] . Berlin:Springer International Publishing . 2017 : 53 - 82 .
MUKHERJEE A , FAKOORIAN S A , HUANG J , et al . Principles of physical layer security in multiuser wireless networks:a survey [J ] . IEEE Communications Surveys & Tutorials , 2014 , 16 ( 3 ): 1550 - 1573 .
ZENG K . Physical layer key generation in wireless networks:challenges and opportunities [J ] . IEEE Communications Magazine , 2015 , 53 ( 6 ): 33 - 39 .
XU P , CUMANAN K , DING Z , et al . Group secret key generation in wireless networks:algorithms and rate optimization [J ] . IEEE Transactions on Information and Security , 2016 , 11 ( 8 ): 1831 - 1846 .
YANG E , WU X . Information-theoretically secure key generation and management [C ] // IEEE International Symposium on Information Theory . 2017 : 1529 - 1533 .
ZHANG H , LIANG Y , LAI L , et al . Multi-key generation over a cellular model with a helper [J ] . IEEE Transactions on Information and Security , 2017 , 63 ( 6 ): 3804 - 3822 .
MAURER U M . Secret key agreement by public discussion from common information [J ] . IEEE Transactions on Information and Security , 1993 , 39 ( 3 ): 733 - 742 .
AHLSWEDE R , CSISZAR I . Common randomness in information theory and cryptography—part I:secret sharing [J ] . IEEE Transactions on Information and Security , 1993 , 39 ( 4 ): 1121 - 1132 .
YE C , MATHUR S , REZNIK A , et al . Information-theoretically secret key generation for fading wireless channel [J ] . IEEE Transactions on Information and Security , 2010 , 5 ( 2 ): 240 - 254 .
ZHANG J , DUONG T Q , MARSHALL A , et al . Key generation from wireless channels:a review [J ] . IEEE Access , 2016 , 4 : 614 - 626 .
PENG Y , WANG P , XIANG W , et al . Secret key generation based on estimated channel state information for TDD-OFDM systems over fading channels [J ] . IEEE Transactions on Wireless Communications , 2017 , 16 ( 8 ): 5176 - 5186 .
ZHANG J , HE B , DUONG T Q , et al . On the key generation from correlated wireless channels [J ] . IEEE Communications Letters , 2017 , 21 ( 4 ): 961 - 964 .
CASTEL T , TORRE P V , ROGIER H . RSS-based secret key generation for indoor and outdoor WBANs using on-body sensor nodes [C ] // International Conference on Military Communications and Information Systems . 2016 : 1 - 5 .
ZHU X , XU F , NOVAK E , et al . Using wireless link dynamics to extract a secret key in vehicular scenarios [J ] . IEEE Transactions on Mobile Computing , 2016 , 16 ( 7 ): 2065 - 2078 .
MARGELIS G , FAFOUTIS X , OIKONOMOU G , et al . Physical layer secret-key generation with discreet cosine transform for the Internet of things [C ] // IEEE International Conference on Communications . 2017 : 1 - 6 .
CSISZAR I , NARAYAN P . Common randomness and secret key generation with a helper [J ] . IEEE Transactions on Information and Security , 2000 , 46 ( 2 ): 344 - 366 .
SHIMIZU T , IWAI H , SASAOKA H . Physical-layer secret key agreement in two-way wireless relaying systems [J ] . IEEE Transactions on Information and Security , 2011 , 6 ( 3 ): 650 - 660 .
LAI L , LIANG Y , DU W . Cooperative key generation in wireless networks [J ] . IEEE Journal on Selected Areas in Communications , 2012 , 30 ( 8 ): 1578 - 1588 .
ZHOU H , HUIE L M , LAI L . Secret key generation in the two-way relay channel with active attackers [J ] . IEEE Transactions on Information and Security , 2014 , 9 ( 3 ): 476 - 488 .
THAI C D T , LEE J , QUEK T Q S . Physical-layer secret key generation with colluding untrusted relays [J ] . IEEE Transactions on Wireless Communications , 2016 , 15 ( 2 ): 1517 - 1530 .
0
浏览量
1063
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构