浏览全部资源
扫码关注微信
解放军信息工程大学信息系统工程学院,河南 郑州 450001
[ "任东方(1993-),男,河南平顶山人,解放军信息工程大学硕士生,主要研究方向为通信信号处理、辐射源识别等。" ]
[ "张涛(1977-),男,湖北天门人,解放军信息工程大学教授、博士生导师,主要研究方向为图像处理、辐射源识别,模式识别等。" ]
[ "韩洁(1990-),女,河南郑州人,解放军信息工程大学博士生,主要研究方向为通信信号处理、辐射源识别等。" ]
[ "王欢欢(1992-),男,河南永城人,解放军信息工程大学硕士生,主要研究方向为通信信号处理、辐射源识别等。" ]
网络出版日期:2017-12,
纸质出版日期:2017-12-25
移动端阅览
任东方, 张涛, 韩洁, 等. 基于ITD与纹理分析的特定辐射源识别方法[J]. 通信学报, 2017,38(12):160-168.
Dong-fang REN, Tao ZHANG, Jie HAN, et al. Specific emitter identification based on ITD and texture analysis[J]. Journal on communications, 2017, 38(12): 160-168.
任东方, 张涛, 韩洁, 等. 基于ITD与纹理分析的特定辐射源识别方法[J]. 通信学报, 2017,38(12):160-168. DOI: 10.11959/j.issn.1000-436x.2017299.
Dong-fang REN, Tao ZHANG, Jie HAN, et al. Specific emitter identification based on ITD and texture analysis[J]. Journal on communications, 2017, 38(12): 160-168. DOI: 10.11959/j.issn.1000-436x.2017299.
为解决基于希尔伯特黄变换(HHT,Hilbert-Huang transform)的特定辐射源识别方法在时频分析方面存在缺陷,所提特征可分性差的问题,该文基于固有时间尺度分解(ITD,intrinsic time-scale decomposition)提出一种新的辐射源个体识别方法。首先,通过固有时间尺度分解的方法将信号分解,进而得到其时频能量分布;之后,将信号时频能量谱转化为灰度图像,通过直方图统计和灰度共生矩阵提取图像纹理特征对不同信号进行识别。分别采用实测舰船通信信号以及仿真辐射源信号对所提算法进行性能测试,实验结果表明,其性能优于2种基于希尔伯特黄变换的方法。
To solve the defects of time-frequency analysis and poor separability of extracted features in specific emitter identification (SEI) based on Hilbert-Huang transform (HHT),a novel SEI method based on intrinsic time-scale decomposition(ITD)was proposed.ITD was utilized to decompose the emitter signals and get the time-frequency energy distribution(TFED)firstly,later the TFED spectrum was transformed into gray image and several image texture features through histogram statistic and gray-level co-occurrence matrix was extracted for identification.Measured ship communication signals and simulated emitter signals were used to test the performance of proposed method.Compared with another two SEI methods based on HHT,the proposed method is proved more effective in identification accuracy.
许丹 . 辐射源指纹机理及识别方法研究 [D ] . 长沙:国防科学技术大学 , 2008 .
XU D . Research on mechanism and methodology of specific emitter identification [D ] . Changsha:National University of Defense Technology , 2008 .
BARBEAUE M , HALL J , KRANAKIS E . Detecting impersonation attacks in future wireless and mobile networks [J ] . Lecture Notes in Computer Science , 2006 , 4074 ( 1 ): 80 - 95 .
POLAK A C , GOECKEL D L . Identification of wireless devices of users who actively fake their RF fingerprints with artificial data distortion [J ] . IEEE Transactions on Wireless Communications , 2015 , 14 ( 11 ): 1 - 1 .
KIM K , SPOONER C M , AKBARI , et al . Specific emitter identification for cognitive radio with application to IEEE 802.11 [C ] // IEEE Global Telecommunications Conference . 2008 : 1 - 5 .
ELLIS K J , SERINKEN N . Characteristics of radio transmitter fingerprints [J ] . Radio Science , 2001 , 36 ( 36 ): 585 - 598 .
REHMAN U , SOWERBY K , COGHILL C . RF fingerprint feature extraction from the energy envelop of an instantaneous transient signal [J ] . Australian Communication Theory Workshop , 2012 : 90 - 95 .
HUANG G Q , YING J Y , XIANG W . Specific emitter identification for communication transmitter using multi-measurement [J ] . Wireless Personal Communication , 2016 : 1 - 20 .
王大海 . 卫星通信辐射源细微特征提取技术研究 [D ] . 郑州:解放军信息工程大学 , 2015 .
WANG D H . Research on the extraction technology of satellite communication transmitter fine features [D ] . Zhengzhou:PLA Information Engineering University , 2015 .
马强 , 田红园 , 郑文秀 . 基于分形维数与SVM的PUE攻击检测 [J ] . 无线电通信技术 , 2015 , 41 ( 2 ): 26 - 28 .
MA Q , TIAN H Y , ZHENG W X . Method of PUE attack user detection based on fractal dimension and SVM [J ] . Radio Communications Technology , 2015 , 41 ( 2 ): 26 - 28 .
桂云川 , 杨俊安 , 万俊 . 基于双谱特征融合的通信辐射源识别算法 [J ] . 探测与控制学报 , 2016 , 38 ( 5 ): 91 - 95 .
GUI Y C , YANG J A , WAN J . A transmitter recognition algorithm based on clual spectrum feature extraction [J ] . Journal of Detection &Control , 2016 , 38 ( 5 ): 91 - 95 .
LI L , JI H B , JIANG L . Quadratic time-frequency analysis and sequential recognition for specific emitter identification [J ] . IET Signal Processing , 2011 , 5 ( 6 ): 568 - 574 .
LI Y B , GE J , LIN Y , et al . Radar emitter signal recognition based on multi-scale wavelet entropy and feature weighting [J ] . Journal of Central South University , 2014 , 21 ( 11 ): 4254 - 4260 .
HUANG N E , SHEN Z , STEVEN R , et al . The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [C ] // The Royal Society A Mathematical Physical & Engineering Sciences , 1998 , 454 ( 1971 ): 903 - 995 .
YANG X , CHENG G , LIU H . Improved empirical mode decomposition algorithm of processing complex signal for IoT application [J ] . International Journal of Distributed Sensor Networks , 2015 , 2015 ( 3 ): 1 - 8 .
FREI M G , OSORIO I . Intrinsic time-scale decomposition:time-frequency-energy analysis and real-time filtering of nonstationary signals [J ] . The Royal Society a Mathematical Physical &Engineering Sciences , 2007 , 463 ( 2078 ): 321 - 342
DONG C X , RAO X , YANG S Q , et al . Method for selecting the parameters of support vector machines [J ] . Systems Engineering &Electronics , 2004 , 26 ( 8 ): 1117 - 1120 .
ZHANG J , WANG F , DOBRE O A , et al . Specific emitter identification via Hilbert-Huang Transform in Single-Hop and Relaying Scenarios [J ] . IEEE Transactions on Information Forensics&Security , 2016 , 11 ( 6 ): 1192 - 1205 .
YUAN Y , HUANG Z , WU H , et al . Specific emitter identification based on Hilbert-Huang transform-based time-frequency-energy distribution features [J ] . IET Communications , 2014 , 8 ( 13 ): 2404 - 2412 .
LIU M W , DOHERTY J F . Nonlinearity estimation for specific emitter identification in multipath channels [J ] . IEEE Transactions on Information Forensics&Security , 2011 , 6 ( 3 ): 1076 - 1085 .
0
浏览量
875
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构